TY - JOUR A1 - Ballato, Paolo A1 - Strecker, Manfred T1 - Assessing tectonic and climatic causal mechanisms in foreland-basin stratal architecture: insights from the Alborz Mountains, northern Iran JF - Earth surface processes and landforms : the journal of the British Geomorphological Research Group N2 - The southern foreland basin of the Alborz Mountains of northern Iran is characterized by an approximately 7.3-km-thick sequence of Miocene sedimentary rocks, constituting three basin-wde coarsening-upward units spanning a period of 10(6)years. We assess available magnetostratigraphy, paleoclimatic reconstructions, stratal architecture, records of depositional environments, and sediment-provenance data to characterize the relationships between tectonically-generated accommodation space (A) and sediment supply (S). Our analysis allows an inversion of the stratigraphy for particular forcing mechanisms, documenting causal relationships, and providing a basis to decipher the relative contributions of tectonics and climate (inferred changes in precipitation) in controlling sediment supply to the foreland basin. Specifically, A/S>1, typical of each basal unit (17.5-16.0, 13.8-13.1 and 10.3-9.6Ma), is associated with sharp facies retrogradation and reflects substantial tectonic subsidence. Within these time intervals, arid climatic conditions, changes in sediment provenance, and accelerated exhumation in the orogen suggest that sediment supply was most likely driven by high uplift rates. Conversely, A/S<1 (13.8 and 13.8-11Ma, units 1, and 2) reflects facies progradation during a sharp decline in tectonic subsidence caused by localized intra-basinal uplift. During these time intervals, climate continued to be arid and exhumation active, suggesting that sediment supply was again controlled by tectonics. A/S<1, at 11-10.3Ma and 9-6-7.6Ma (and possibly 6.2; top of units 2 and 3), is also associated with two episodes of extensive progradation, but during wetter phases. The first episode appears to have been linked to a pulse in sediment supply driven by an increase in precipitation. The second episode reflects a balance between a climatically-induced increase in sediment supply and a reduction of subsidence through the incorporation of the proximal foreland into the orogenic wedge. This in turn caused an expansion of the catchment and a consequent further increase in sediment supply. KW - sediment supply KW - climatic and tectonic forcing KW - accommodation-space KW - sediment-supply ratio (A /S) KW - foreland-basin stratigraphy KW - Alborz Mountains Y1 - 2014 U6 - https://doi.org/10.1002/esp.3480 SN - 0197-9337 SN - 1096-9837 VL - 39 IS - 1 SP - 110 EP - 125 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Ghassemi, Mohammad R. A1 - Fattahi, Morteza A1 - Landgraf, Angela A1 - Ahmadi, Mehdi A1 - Ballato, Paolo A1 - Tabatabaei, Saeid H. T1 - Kinematic links between the Eastern Mosha Fault and the North Tehran Fault, Alborz range, northern Iran JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - Kinematic interaction of faults is an important issue for detailed seismic hazard assessments in seismically active regions. The Eastern Mosha Fault (EMF) and the North Tehran Fault (NTF) are two major active faults of the southern central Alborz mountains, located in proximity of Tehran (population similar to 9 million). We used field, geomorphological and paleoseismological data to explore the kinematic transition between the faults, and compare their short-term and long-term history of activity. We introduce the Niknamdeh segment of the NTF along which the strike-slip kinematics of EMF is transferred onto the NTF, and which is also responsible for the development of a pull-apart basin between the eastern segments of the NTF. The Ira trench site at the linkage zone between the two faults reveals the history of interaction between rock avalanches, active faulting and sag-pond development. The kinematic continuity between the EMF and NTF requires updating of seismic hazard models for the NTF, the most active fault adjacent to the Tehran Metropolis. Study of offsets of large-scale morphological features along the EMF, and comparison with estimated slip rates along the fault indicates that the EMF has started its left-lateral kinematics between 3.2 and 4.7 Ma. According to our paleoseismological data and the morphology of the nearby EMF and NTF, we suggest minimum and maximum values of about 1.8 and 3.0 mm/year for the left-lateral kinematics on the two faults in their linkage zone, averaged over Holocene time scales. Our study provides a partial interpretation, based on available data, for the fault activity in northeastern Tehran region, which may be completed with studies of other active faults of the region to evaluate a more realistic seismic hazard analysis for this heavily populated major city. (C) 2014 Elsevier B.V. All rights reserved. KW - Mosha Fault KW - North Tehran Fault KW - Alborz range KW - Slip rate KW - Fault linkage and interaction KW - Paleoseismology Y1 - 2014 U6 - https://doi.org/10.1016/j.tecto.2014.03.007 SN - 0040-1951 SN - 1879-3266 VL - 622 SP - 81 EP - 95 PB - Elsevier CY - Amsterdam ER -