TY - JOUR A1 - Saalfrank, Peter A1 - Juaristi, J. I. A1 - Alducin, Maite A1 - Blanco-Rey, Maria A1 - Muino, R. Diez T1 - Vibrational lifetimes of hydrogen on lead films : an ab initio molecular dynamics with electronic friction (AIMDEF) study JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Using density functional theory and Ab Initio Molecular Dynamics with Electronic Friction (AIMDEF), we study the adsorption and dissipative vibrational dynamics of hydrogen atoms chemisorbed on free-standing lead films of increasing thickness. Lead films are known for their oscillatory behaviour of certain properties with increasing thickness, e.g., energy and electron spill-out change in discontinuous manner, due to quantum size effects [G. Materzanini, P. Saalfrank, and P.J.D. Lindan, Phys. Rev. B 63, 235405 (2001)]. Here, we demonstrate that oscillatory features arise also for hydrogen when chemisorbed on lead films. Besides stationary properties of the adsorbate, we concentrate on finite vibrational lifetimes of H-surface vibrations. As shown by AIMDEF, the damping via vibration-electron hole pair coupling dominates clearly over the vibration-phonon channel, in particular for high-frequency modes. Vibrational relaxation times are a characteristic function of layer thickness due to the oscillating behaviour of the embedding surface electronic density. Implications derived from AIMDEF for frictional many-atom dynamics, and physisorbed species will also be given. (C) 2014 AIP Publishing LLC. Y1 - 2014 U6 - https://doi.org/10.1063/1.4903309 SN - 0021-9606 SN - 1089-7690 VL - 141 IS - 23 PB - American Institute of Physics CY - Melville ER -