TY - JOUR A1 - Shayduk, Roman A1 - Hallmann, Jörg A1 - Rodriguez-Fernandez, Angel A1 - Scholz, Markus A1 - Lu, Wei A1 - Bösenberg, Ulrike A1 - Möller, Johannes A1 - Zozulya, Alexey A1 - Jiang, Man A1 - Wegner, Ulrike A1 - Secareanu, Radu-Costin A1 - Palmer, Guido A1 - Emons, Moritz A1 - Lederer, Max A1 - Volkov, Sergey A1 - Lindfors-Vrejoiu, Ionela A1 - Schick, Daniel A1 - Herzog, Marc A1 - Bargheer, Matias A1 - Madsen, Anders T1 - Femtosecond x-ray diffraction study of multi-THz coherent phonons in SrTiO3 JF - Applied physics letters N2 - We report generation of ultra-broadband longitudinal acoustic coherent phonon wavepackets in SrTiO3 (STO) with frequency components extending throughout the first Brillouin zone. The wavepackets are efficiently generated in STO using femtosecond infrared laser excitation of an atomically flat 1.6 nm-thick epitaxial SrRuO3 film. We use femtosecond x-ray diffraction at the European X-Ray Free Electron Laser Facility to study the dispersion and damping of phonon wavepackets. The experimentally determined damping constants for multi-THz frequency phonons compare favorably to the extrapolation of a simple ultrasound damping model over several orders of magnitude. Y1 - 2022 U6 - https://doi.org/10.1063/5.0083256 SN - 0003-6951 SN - 1077-3118 VL - 120 IS - 20 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Singh, Rishu Kumar A1 - Górska, Katarzyna A1 - Sandev, Trifce T1 - General approach to stochastic resetting JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We address the effect of stochastic resetting on diffusion and subdiffusion process. For diffusion we find that mean square displacement relaxes to a constant only when the distribution of reset times possess finite mean and variance. In this case, the leading order contribution to the probability density function (PDF) of a Gaussian propagator under resetting exhibits a cusp independent of the specific details of the reset time distribution. For subdiffusion we derive the PDF in Laplace space for arbitrary resetting protocol. Resetting at constant rate allows evaluation of the PDF in terms of H function. We analyze the steady state and derive the rate function governing the relaxation behavior. For a subdiffusive process the steady state could exist even if the distribution of reset times possesses only finite mean. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevE.105.064133 SN - 2470-0045 SN - 2470-0053 VL - 105 IS - 6 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Padash, Amin A1 - Sandev, Trifce A1 - Kantz, Holger A1 - Metzler, Ralf A1 - Chechkin, Aleksei T1 - Asymmetric Levy flights are more efficient in random search JF - Fractal and fractional N2 - We study the first-arrival (first-hitting) dynamics and efficiency of a one-dimensional random search model performing asymmetric Levy flights by leveraging the Fokker-Planck equation with a delta-sink and an asymmetric space-fractional derivative operator with stable index alpha and asymmetry (skewness) parameter beta. We find exact analytical results for the probability density of first-arrival times and the search efficiency, and we analyse their behaviour within the limits of short and long times. We find that when the starting point of the searcher is to the right of the target, random search by Brownian motion is more efficient than Levy flights with beta <= 0 (with a rightward bias) for short initial distances, while for beta>0 (with a leftward bias) Levy flights with alpha -> 1 are more efficient. When increasing the initial distance of the searcher to the target, Levy flight search (except for alpha=1 with beta=0) is more efficient than the Brownian search. Moreover, the asymmetry in jumps leads to essentially higher efficiency of the Levy search compared to symmetric Levy flights at both short and long distances, and the effect is more pronounced for stable indices alpha close to unity. KW - asymmetric Levy flights KW - first-arrival density KW - search efficiency Y1 - 2022 U6 - https://doi.org/10.3390/fractalfract6050260 SN - 2504-3110 VL - 6 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Gerlach, Marius A1 - Preitschopf, Tobias A1 - Karaev, Emil A1 - Quitian-Lara, Heidy Mayerly A1 - Mayer, Dennis A1 - Bozek, John A1 - Fischer, Ingo A1 - Fink, Reinhold F. T1 - Auger electron spectroscopy of fulminic acid, HCNO BT - an experimental and theoretical study JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - HCNO is a molecule of considerable astrochemical interest as a precursor to prebiotic molecules. It is synthesized by preparative pyrolysis and is unstable at room temperature. Here, we investigate its spectroscopy in the soft X-ray regime at the C 1s, N 1s and O 1s edges. All 1s ionization energies are reported and X-ray absorption spectra reveal the transitions from the 1s to the pi* state. Resonant and normal Auger electron spectra for the decay of the core hole states are recorded in a hemispherical analyzer. An assignment of the experimental spectra is provided with the aid of theoretical counterparts. The latter are using a valence configuration interaction representation of the intermediate and final state energies and wavefunctions, the one-center approximation for transition rates and band shapes according to the moment theory. The computed spectra are in very good agreement with the experimental data and most of the relevant bands are assigned. Additionally, we present a simple approach to estimate relative Auger transition rates on the basis of a minimal basis representation of the molecular orbitals. We demonstrate that this provides a qualitatively good and reliable estimate for several signals in the normal and resonant Auger electron spectra which have significantly different intensities in the decay of the three core holes. Y1 - 2022 U6 - https://doi.org/10.1039/d2cp02104h SN - 1463-9076 SN - 1463-9084 VL - 24 IS - 25 SP - 15217 EP - 15229 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Fritsch, Tobias A1 - Kurpiers, Jona A1 - Roland, Steffen A1 - Tokmoldin, Nurlan A1 - Shoaee, Safa A1 - Ferron, Thomas A1 - Collins, Brian A. A1 - Janietz, Silvia A1 - Vandewal, Koen A1 - Neher, Dieter T1 - On the interplay between CT and singlet exciton emission in organic solar cells with small driving force and its impact on voltage loss JF - Advanced energy materials N2 - The interplay between free charge carriers, charge transfer (CT) states and singlet excitons (S-1) determines the recombination pathway and the resulting open circuit voltage (V-OC) of organic solar cells. By combining a well-aggregated low bandgap polymer with different blend ratios of the fullerenes PCBM and ICBA, the energy of the CT state (E-CT) is varied by 130 meV while leaving the S-1 energy of the polymer (ES1\[{E_{{{\rm{S}}_1}}}\]) unaffected. It is found that the polymer exciton dominates the radiative properties of the blend when ECT\[{E_{{\rm{CT}}}}\] approaches ES1\[{E_{{{\rm{S}}_1}}}\], while the V-OC remains limited by the non-radiative decay of the CT state. It is concluded that an increasing strength of the exciton in the optical spectra of organic solar cells will generally decrease the non-radiative voltage loss because it lowers the radiative V-OC limit (V-OC,V-rad), but not because it is more emissive. The analysis further suggests that electronic coupling between the CT state and the S-1 will not improve the V-OC, but rather reduce the V-OC,V-rad. It is anticipated that only at very low CT state absorption combined with a fairly high CT radiative efficiency the solar cell benefit from the radiative properties of the singlet excitons. KW - external quantum efficiency KW - organic photovoltaics KW - ternary blends KW - voltage losses Y1 - 2022 U6 - https://doi.org/10.1002/aenm.202200641 SN - 1614-6832 SN - 1614-6840 VL - 12 IS - 31 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Ujevic, Maximiliano A1 - Rashti, Alireza A1 - Gieg, Henrique Leonhard A1 - Tichy, Wolfgang A1 - Dietrich, Tim T1 - High-accuracy high-mass-ratio simulations for binary neutron stars and their comparison to existing waveform models JF - Physical review : D, Particles, fields, gravitation, and cosmology N2 - The subsequent observing runs of the advanced gravitational-wave detector network will likely provide us with various gravitational-wave observations of binary neutron star systems. For an accurate interpretation of these detections, we need reliable gravitational-wave models. To test and to point out how existing models could be improved, we perform a set of high-resolution numerical relativity simulations for four different physical setups with mass ratios q = 1.25, 1.50, 1.75, 2.00, and total gravitational mass M = 2.7 M???. Each configuration is simulated with five different resolutions to allow a proper error assessment. Overall, we find approximately second-order converging results for the dominant (2,2) mode, but also the subdominant (2,1), (3,3), and (4,4) modes, while generally, the convergence order reduces slightly for an increasing mass ratio. Our simulations allow us to validate waveform models, where we find generally good agreement between state-of-the-art models and our data, and to prove that scaling relations for higher modes currently employed for binary black hole waveform modeling also apply for the tidal contribution. Finally, we also test if the current NRTidal model used to describe tidal effects is a valid description for high-mass-ratio systems. We hope that our simulation results can be used to further improve and test waveform models in preparation for the next observing runs. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevD.106.023029 SN - 2470-0010 SN - 2470-0029 VL - 106 IS - 2 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Büchner, Robby A1 - da Cruz, Vinicius Vaz A1 - Grover, Nitika A1 - Charisiadis, Asterios A1 - Fondell, Mattis A1 - Haverkamp, Robert A1 - Senge, Mathias O. A1 - Föhlisch, Alexander T1 - Fundamental electronic changes upon intersystem crossing in large aromatic photosensitizers: free base 5,10,15,20-tetrakis(4-carboxylatophenyl)porphyrin JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Free base 5,10,15,20-tetrakis(4-carboxylatophenyl)porphyrin stands for the class of powerful porphyrin photosensitizers for singlet oxygen generation and light-harvesting. The atomic level selectivity of dynamic UV pump - N K-edge probe X-ray absorption spectroscopy in combination with time-dependent density functional theory (TD-DFT) gives direct access to the crucial excited molecular states within the unusual relaxation pathway. The efficient intersystem crossing, that is El-Sayed forbidden and not facilitated by a heavy atom is confirmed to be the result of the long singlet excited state lifetime (Q(x) 4.9 ns) and thermal effects. Overall, the interplay of stabilization by conservation of angular momenta and vibronic relaxation drive the de-excitation in these chromophores. Y1 - 2022 U6 - https://doi.org/10.1039/d1cp05420a SN - 1463-9076 SN - 1463-9084 VL - 24 IS - 12 SP - 7505 EP - 7511 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Dorsch, Matti A1 - Jeffery, C. Simon A1 - Irrgang, Andreas A1 - Woolf, Vincent A1 - Heber, Ulrich T1 - EC 22536-5304 BT - a lead-rich and metal-poor long-period binary JF - Astronomy and astrophysics : an international weekly journal N2 - Helium-burning hot subdwarf stars of spectral types O and B (sdO/B) are thought to be produced through various types of binary interactions. The helium-rich hot subdwarf star EC 22536-5304 was recently found to be extremely enriched in lead. Here, we show that EC 22536-5304 is a binary star with a metal-poor subdwarf F-type (sdF) companion. We performed a detailed analysis of high-resolution SALT/HRS and VLT/UVES spectra, deriving metal abundances for the hot subdwarf, as well as atmospheric parameters for both components. Because we consider the contribution of the sdF star, the derived lead abundance for the sdOB, + 6.3 +/- 0.3 dex relative to solar, is even higher than previously thought. We derive T-eff = 6210 +/- 70 K, log g = 4.64 +/- 0.10, [FE/H] = - 1.95 +/- 0.04, and [alpha/Fe] = + 0.40 +/- 0.04 for the sdF component. Radial velocity variations, although poorly sampled at present, indicate that the binary system has a long orbital period of about 457 days. This suggests that the system was likely formed through stable Roche lobe overflow (RLOF). A kinematic analysis shows that EC 22536-5304 is on an eccentric orbit around the Galactic centre. This, as well as the low metallicity and strong alpha enhancement of the sdF-type companion, indicate that EC 22536-5304 is part of the Galactic halo or metal-weak thick disc. As the first long-period hot subdwarf binary at [FE/H] less than or similar to- 1, EC 22536-5304 may help to constrain the RLOF mechanism for mass transfer from low-mass, low-metallicity red giant branch (RGB) stars to main-sequence companions. KW - stars: abundances KW - stars: chemically peculiar KW - subdwarfs KW - stars: individual: EC 22536-5304 KW - binaries: spectroscopic Y1 - 2021 U6 - https://doi.org/10.1051/0004-6361/202141381 SN - 1432-0746 VL - 653 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Andersson, Edvin K. W. A1 - Sångeland, Christofer A1 - Berggren, Elin A1 - Johansson, Fredrik O. L. A1 - Kühn, Danilo A1 - Lindblad, Andreas A1 - Mindemark, Jonas A1 - Hahlin, Maria T1 - Early-stage decomposition of solid polymer electrolytes in Li-metal batteries JF - Journal of materials chemistry : A, Materials for energy and sustainability N2 - Development of functional and stable solid polymer electrolytes (SPEs) for battery applications is an important step towards both safer batteries and for the realization of lithium-based or anode-less batteries. The interface between the lithium and the solid polymer electrolyte is one of the bottlenecks, where severe degradation is expected. Here, the stability of three different SPEs - poly(ethylene oxide) (PEO), poly(epsilon-caprolactone) (PCL) and poly(trimethylene carbonate) (PTMC) - together with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, is investigated after they have been exposed to lithium metal under UHV conditions. Degradation compounds, e.g. Li-O-R, LiF and LixSyOz, are identified for all SPEs using soft X-ray photoelectron spectroscopy. A competing degradation between polymer and salt is identified in the outermost surface region (<7 nm), and is dependent on the polymer host. PTMC:LiTFSI shows the most severe decomposition of both polymer and salt followed by PCL:LiTFSI and PEO:LiTFSI. In addition, the movement of lithium species through the decomposed interface shows large variation depending on the polymer electrolyte system. Y1 - 2021 U6 - https://doi.org/10.1039/d1ta05015j SN - 2050-7488 SN - 2050-7496 VL - 9 IS - 39 SP - 22462 EP - 22471 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Wang, Wei A1 - Cherstvy, Andrey G. A1 - Kantz, Holger A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - How different are the results of constant-rate resetting of anomalous-diffusion processes in terms of their ensemble-averaged versus time-averaged mean-squared displacements (MSDs versus TAMSDs) and how does stochastic resetting impact nonergodicity? We examine, both analytically and by simulations, the implications of resetting on the MSD- and TAMSD-based spreading dynamics of particles executing fractional Brownian motion (FBM) with a long-time memory, heterogeneous diffusion processes (HDPs) with a power-law space-dependent diffusivity D(x) = D0|x|gamma and their "combined" process of HDP-FBM. We find, inter alia, that the resetting dynamics of originally ergodic FBM for superdiffusive Hurst exponents develops disparities in scaling and magnitudes of the MSDs and mean TAMSDs indicating weak ergodicity breaking. For subdiffusive HDPs we also quantify the nonequivalence of the MSD and TAMSD and observe a new trimodal form of the probability density function. For reset FBM, HDPs and HDP-FBM we compute analytically and verify by simulations the short-time MSD and TAMSD asymptotes and long-time plateaus reminiscent of those for processes under confinement. We show that certain characteristics of these reset processes are functionally similar despite a different stochastic nature of their nonreset variants. Importantly, we discover nonmonotonicity of the ergodicitybreaking parameter EB as a function of the resetting rate r. For all reset processes studied we unveil a pronounced resetting-induced nonergodicity with a maximum of EB at intermediate r and EB similar to(1/r )-decay at large r. Alongside the emerging MSD-versus-TAMSD disparity, this r-dependence of EB can be an experimentally testable prediction. We conclude by discussing some implications to experimental systems featuring resetting dynamics. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.024105 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 2 PB - American Institute of Physics CY - Woodbury, NY ER -