TY - JOUR A1 - Velk, Natalia A1 - Uhlig, Katja A1 - Vikulina, Anna A1 - Duschl, Claus A1 - Volodkin, Dmitry T1 - Mobility of lysozyme in poly(L-lysine)/hyaluronic acid multilayer films JF - Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces N2 - The spatial and temporal control over presentation of protein-based biomolecules such as growth factors and hormones is crucial for in vitro applications to mimic the complex in vivo environment. We investigated the interaction of a model protein lysozyme (Lys) with poly(L-lysine)/hyaluronic acid (PLL/HA) multilayer films. We focused on Lys diffusion as well as adsorption and retention within the film as a function of the film deposition conditions and post-treatment. Additionally, an effect of Lys concentration on its mobility was probed. A combination of confocal fluorescence microscopy, fluorescence recovery after photobleaching, and microfluidics was employed for this investigation. Our main finding is that adsorption of PLL and HA after protein loading induces acceleration and reduction of Lys mobility, respectively. These results suggest that a charge balance in the film to a high extent governs the protein-film interaction. We believe that control over protein mobility is a key to reach the full potential of the PLL/HA films as reservoirs for biomolecules depending on the application demand. (C) 2016 The Authors. Published by Elsevier B.V. KW - Layer-by-layer KW - Protein KW - Diffusion KW - Release KW - FRAP Y1 - 2016 U6 - https://doi.org/10.1016/j.colsurfb.2016.07.055 SN - 0927-7765 SN - 1873-4367 VL - 147 SP - 343 EP - 350 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Sustr, David A1 - Hlaváček, Antonín A1 - Duschl, Claus A1 - Volodkin, Dmitry T1 - Multi-fractional analysis of molecular diffusion in polymer multilayers by FRAP BT - a new simulation-based approach JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical N2 - Comprehensive analysis of the multifractional molecular diffusion provides a deeper understanding of the diffusion phenomenon in the fields of material science, molecular and cell biology, advanced biomaterials, etc. Fluorescence recovery after photobleaching (FRAP) is commonly employed to probe the molecular diffusion. Despite FRAP being a very popular method, it is not easy to assess multifractional molecular diffusion due to limited possibilities of approaches for analysis. Here we present a novel simulation-optimization-based approach (S-approach) that significantly broadens possibilities of the analysis. In the S-approach, possible fluorescence recovery scenarios are primarily simulated and afterward compared with a real measurement while optimizing parameters of a model until a sufficient match is achieved. This makes it possible to reveal multifractional molecular diffusion. Fluorescent latex particles of different size and fluorescein isothiocyanate in an aqueous medium were utilized as test systems. Finally, the S-approach has been used to evaluate diffusion of cytochrome c loaded into multilayers made of hyaluronan and polylysine. Software for evaluation of multifractional molecular diffusion by S-approach has been developed aiming to offer maximal versatility and user-friendly way for analysis. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpcb.7b11051 SN - 1520-6106 VL - 122 IS - 3 SP - 1323 EP - 1333 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Prokopovic, Vladimir Z. A1 - Vikulina, Anna S. A1 - Sustr, David A1 - Duschl, Claus A1 - Volodkin, Dmitry T1 - Biodegradation-Resistant Multilayers Coated with Gold Nanoparticles. Toward a Tailor-made Artificial Extracellular Matrix JF - Journal of colloid and interface science N2 - Polymer multicomponent coatings such as multilayers mimic an extracellular, matrix (ECM) that attracts significant attention for the use of the multilayers as functional supports for advanced cell culture and tissue engineering. Herein, biodegradation and molecular transport in hyaluronan/polylysine multilayers coated with gold nanoparticles were described. Nanoparticle coating acts as a semipermeable barrier that governs molecular transport into/from the multilayers, and makes them biodegradation-resistant. Model protein lysozyme (mimics of ECM-soluble signals) diffuses into the multilayers as fast- and, slow-diffusing populations existing in an equilibrium,. Such a. composite system may have high potential to be exploited as degradation-resistant drug-delivery platforms suitable for cell-based applications. KW - hyaluronic acid KW - polylysine KW - diffusion KW - semipermeable KW - fluorescence recovery after photobleaching KW - layer-by-layer KW - enzymatic degradation KW - cell adhesion Y1 - 2016 U6 - https://doi.org/10.1021/acsami.6b10095 SN - 1944-8244 VL - 8 SP - 24345 EP - 24349 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Prokopovic, Vladimir Z. A1 - Duschl, Claus A1 - Volodkin, Dmitry T1 - Hyaluronic Acid/Poly-l-Lysine Multilayers as Reservoirs for Storage and Release of Small Charged Molecules JF - Macromolecular bioscience N2 - Polyelectrolyte multilayer films are nowadays very attractive for bioapplications due to their tunable properties and ability to control cellular response. Here we demonstrate that multilayers made of hyaluronic acid and poly-l-lysine act as high-capacity reservoirs for small charged molecules. Strong accumulation within the film is explained by electrostatically driven binding to free charges of polyelectrolytes. Binding and release mechanisms are discussed based on charge balance and polymer dynamics in the film. Our results show that transport of molecules through the film-solution interface limits the release rate. The multilayers might serve as an effective platform for drug delivery and tissue engineering due to high potential for drug loading and controlled release. KW - diffusion KW - drug delivery KW - dye KW - release mechanism Y1 - 2015 U6 - https://doi.org/10.1002/mabi.201500093 SN - 1616-5187 SN - 1616-5195 VL - 15 IS - 10 SP - 1357 EP - 1363 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Feoktistova, Natalia A1 - Rose, Jürgen A1 - Prokopovic, Vladimir Z. A1 - Vikulina, Anna S. A1 - Skirtach, Andre A1 - Volodkin, Dmitry T1 - Controlling the Vaterite CaCO3 Crystal Pores. Design of Tailor-Made Polymer Based Microcapsules by Hard Templating JF - Langmuir N2 - The spherical vaterite CaCO3 microcrystals are nowadays widely used as sacrificial templates for fabrication of various microcarriers made of biopolymers (e.g., proteins, nucleic acids, enzymes) due to porous structure and mild template elimination conditions. Here, we demonstrated for the first time that polymer microcarriers with tuned internal nanoarchitecture can be designed by employing the CaCO3 crystals of controlled porosity. The layer-by-layer deposition has been utilized to assemble shell-like (hollow) and matrix-like (filled) polymer capsules due to restricted and free polymer diffusion through the crystal pores, respectively. The crystal pore size in the range of few tens of nanometers can be adjusted without any additives by variation of the crystal preparation temperature in the range 745 degrees C. The temperature-mediated growth mechanism is explained by the Ostwald ripening of nanocrystallites forming the crystal secondary structure. Various techniques including SEM, AFM, CLSM, Raman microscopy, nitrogen adsorptiondesorption, and XRD have been employed for crystal and microcapsule analysis. A three-dimensional model is introduced to describe the crystal internal structure and predict the pore cutoff and available surface for the pore diffusing molecules. Inherent biocompatibility of CaCO3 and a possibility to scale the porosity in the size range of typical biomacromolecules make the CaCO3 crystals extremely attractive tools for template assisted designing tailor-made biopolymer-based architectures in 2D to 3D targeted at drug delivery and other bioapplications. Y1 - 2016 U6 - https://doi.org/10.1021/acs.langmuir.6b00717 SN - 0743-7463 VL - 32 SP - 4229 EP - 4238 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Anklam, Elke A1 - Behler, Jörg A1 - Dingermann, Theodor A1 - Elsinghorst, Paul A1 - Fischer, Jochen A1 - Esselen, Melanie A1 - Foerster, Christian A1 - Fröhlich, Daniel A1 - Goedel, Werner Andreas A1 - Gregory, Peter A1 - Grimme, Stefan A1 - Hackenberger, Christian A1 - Hansmann, Max A1 - Heppekausen, Johannes A1 - Hasenstab-Riedel, Sebastian A1 - Kirchhoff, Erhard A1 - Kratz, Karl-Ludwig A1 - Krausz, Ferenc A1 - Linker, Torsten A1 - List, Benjamin A1 - Ray, Kallol A1 - Salzer, Reiner A1 - Schubert, Ulrich A1 - Schueth, Ferdi A1 - Schwarz, Helmut A1 - Schwietzke, Uta A1 - Strey, Reinhard A1 - Stumpf, Thorsten A1 - Vaagt, Franziska A1 - Volodkin, Dmitry A1 - Wilke, Guenther A1 - Zass, Engelbert A1 - Zemb, Thomas T1 - Awards JF - Nachrichten aus der Chemie : Zeitschrift der Gesellschaft Deutscher Chemiker Y1 - 2013 U6 - https://doi.org/10.1002/nadc.201390372 SN - 1439-9598 SN - 1868-0054 VL - 61 IS - 11 SP - 1145 EP - 1148 PB - Ges. Dt. Chemiker CY - Frankfurt, Main ER -