TY - JOUR A1 - Gruner, David A1 - Barnes, Sydney A. T1 - Rotation periods for cool stars in the open cluster Ruprecht 147 (NGC 6774) Implications for gyrochronology JF - Astronomy and astrophysics : an international weekly journal N2 - Context: Gyrochronology allows the derivation of ages for cool main sequence stars based on their observed rotation periods and masses, or a suitable proxy thereof. It is increasingly well-explored for FGK stars, but requires further measurements for older ages and K - M-type stars. Aims: We study the 2.7 Gyr-old open cluster Ruprecht 147 to compare it with the previously-studied, but far more distant, NGC 6819 cluster, and especially to measure cooler stars than was previously possible there. Methods: We constructed an inclusive list of 102 cluster members from prior work, including Gaia DR2, and for which light curves were also obtained during Campaign 7 of the Kepler/K2 space mission. We placed them in the cluster color-magnitude diagram and checked the related information against appropriate isochrones. The light curves were then corrected for data systematics using Principal Component Analysis on all observed K2 C07 stars and subsequently subjected to periodicity analysis. Results: Periodic signals are found for 32 stars, 21 of which are considered to be both highly reliable and to represent single, or effectively single, Ru 147 stars. These stars cover the spectral types from late-F to mid-M stars, and they have periods ranging from 6 d - 33 d, allowing for a comparison of Ruprecht 147 to both other open clusters and to models of rotational spindown. The derived rotation periods connect reasonably to, overlap with, and extend to lower masses the known rotation period distribution of the 2.5 Gyr-old cluster NGC 6819. Conclusions: The data confirm that cool stars lie on a single surface in rotation period-mass-age space, and they simultaneously challenge its commonly assumed shape. The shape at the low mass region of the color-period diagram at the age of Ru 147 favors a recently-proposed model which requires a third mass-dependent timescale in addition to the two timescales required by a former model, suggesting that a third physical process is required to model rotating stars effectively. KW - stars: late-type KW - stars: low-mass KW - stars: rotation KW - stars: solar-type Y1 - 2020 U6 - https://doi.org/10.1051/0004-6361/202038984 SN - 0004-6361 SN - 1432-0746 VL - 644 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Gruner, David A1 - Hainich, Rainer A1 - Sander, Andreas Alexander Christoph A1 - Shenar, Tomer A1 - Todt, Helge Tobias A1 - Oskinova, Lida A1 - Ramachandran, Varsha A1 - Ayres, T. A1 - Hamann, Wolf-Rainer T1 - The extreme O-type spectroscopic binary HD 93129A A quantitative, multiwavelength analysis JF - Astronomy and astrophysics : an international weekly journal N2 - Context. HD 93129A was classified as the earliest O-type star in the Galaxy (O2 If*) and is considered as the prototype of its spectral class. However, interferometry shows that this object is a binary system, while recent observations even suggest a triple configuration. None of the previous spectral analyses of this object accounted for its multiplicity. With new high-resolution UV and optical spectra, we have the possibility to reanalyze this key object, taking its binary nature into account for the first time. Aims. We aim to derive the fundamental parameters and the evolutionary status of HD 93129A, identifying the contributions of both components to the composite spectrum Results. Despite the similar spectral types of the two components, we are able to find signatures from each of the components in the combined spectrum, which allows us to estimate the parameters of both stars. We derive log(L/L-circle dot) = 6.15, T-eff = 52 kK, and log (M)over dot = -4.7[M-circle dot yr(-1)] for the primary Aa, and log(L/L-circle dot) = 5.58, T-eff = 45 kK, and log (M)over dot = -5.8 [M(circle dot)yr(-1)] for the secondary Ab. Conclusions. Even when accounting for the binary nature, the primary of HD 93129A is found to be one of the hottest and most luminous O stars in our Galaxy. Based on the theoretical decomposition of the spectra, we assign spectral types O2 If* and O3 III(f*) to components Aa and Ab, respectively. While we achieve a good fit for a wide spectral range, specific spectral features are not fully reproduced. The data are not sufficient to identify contributions from a hypothetical third component in the system. KW - stars: individual: HD 93129A KW - stars: atmospheres KW - stars: fundamental parameters KW - stars: early-typeP Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201833178 SN - 1432-0746 VL - 621 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hainich, Rainer A1 - Ramachandran, Varsha A1 - Shenar, Tomer A1 - Sander, Andreas Alexander Christoph A1 - Todt, Helge Tobias A1 - Gruner, David A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer T1 - PoWR grids of non-LTE model atmospheres for OB-type stars of various metallicities JF - Astronomy and astrophysics : an international weekly journal N2 - The study of massive stars in different metallicity environments is a central topic of current stellar research. The spectral analysis of massive stars requires adequate model atmospheres. The computation of such models is difficult and time-consuming. Therefore, spectral analyses are greatly facilitated if they can refer to existing grids of models. Here we provide grids of model atmospheres for OB-type stars at metallicities corresponding to the Small and Large Magellanic Clouds, as well as to solar metallicity. In total, the grids comprise 785 individual models. The models were calculated using the state-of-the-art Potsdam Wolf-Rayet (PoWR) model atmosphere code. The parameter domain of the grids was set up using stellar evolution tracks. For all these models, we provide normalized and flux-calibrated spectra, spectral energy distributions, feedback parameters such as ionizing photons, Zanstra temperatures, and photometric magnitudes. The atmospheric structures (the density and temperature stratification) are available as well. All these data are publicly accessible through the PoWR website. KW - stars: massive KW - stars: early-type KW - stars: atmospheres KW - stars: winds KW - outflows KW - stars: mass-loss KW - radiative transfer Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201833787 SN - 1432-0746 VL - 621 PB - EDP Sciences CY - Les Ulis ER -