TY - JOUR A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Search efficiency in the Adam-Delbruck reduction-of-dimensionality scenario versus direct diffusive search JF - New journal of physics : the open-access journal for physics N2 - The time instant-the first-passage time (FPT)-when a diffusive particle (e.g., a ligand such as oxygen or a signalling protein) for the first time reaches an immobile target located on the surface of a bounded three-dimensional domain (e.g., a hemoglobin molecule or the cellular nucleus) is a decisive characteristic time-scale in diverse biophysical and biochemical processes, as well as in intermediate stages of various inter- and intra-cellular signal transduction pathways. Adam and Delbruck put forth the reduction-of-dimensionality concept, according to which a ligand first binds non-specifically to any point of the surface on which the target is placed and then diffuses along this surface until it locates the target. In this work, we analyse the efficiency of such a scenario and confront it with the efficiency of a direct search process, in which the target is approached directly from the bulk and not aided by surface diffusion. We consider two situations: (i) a single ligand is launched from a fixed or a random position and searches for the target, and (ii) the case of 'amplified' signals when N ligands start either from the same point or from random positions, and the search terminates when the fastest of them arrives to the target. For such settings, we go beyond the conventional analyses, which compare only the mean values of the corresponding FPTs. Instead, we calculate the full probability density function of FPTs for both scenarios and study its integral characteristic-the 'survival' probability of a target up to time t. On this basis, we examine how the efficiencies of both scenarios are controlled by a variety of parameters and single out realistic conditions in which the reduction-of-dimensionality scenario outperforms the direct search. KW - first-passage times KW - Adam-Delbruck scenario KW - dimensional reduction KW - bulk KW - and surface diffusion Y1 - 2022 U6 - https://doi.org/10.1088/1367-2630/ac8824 SN - 1367-2630 VL - 24 IS - 8 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Wang, Wei A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Inertia triggers nonergodicity of fractional Brownian motion JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - How related are the ergodic properties of the over- and underdamped Langevin equations driven by fractional Gaussian noise? We here find that for massive particles performing fractional Brownian motion (FBM) inertial effects not only destroy the stylized fact of the equivalence of the ensemble-averaged mean-squared displacement (MSD) to the time-averaged MSD (TAMSD) of overdamped or massless FBM, but also dramatically alter the values of the ergodicity-breaking parameter (EB). Our theoretical results for the behavior of EB for underdamped or massive FBM for varying particle mass m, Hurst exponent H, and trace length T are in excellent agreement with the findings of stochastic computer simulations. The current results can be of interest for the experimental community employing various single-particle-tracking techniques and aiming at assessing the degree of nonergodicity for the recorded time series (studying, e.g., the behavior of EB versus lag time). To infer FBM as a realizable model of anomalous diffusion for a set single-particle-tracking data when massive particles are being tracked, the EBs from the data should be compared to EBs of massive (rather than massless) FBM. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.024115 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 2 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Klett, Kolja A1 - Cherstvy, Andrey G. A1 - Shin, Jaeoh A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments BT - coupled translational and rotational motions JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We employ Langevin-dynamics simulations to unveil non-Brownian and non-Gaussian center-of-mass self-diffusion of massive flexible dumbbell-shaped particles in crowded two-dimensional solutions. We study the intradumbbell dynamics of the relative motion of the two constituent elastically coupled disks. Our main focus is on effects of the crowding fraction phi and of the particle structure on the diffusion characteristics. We evaluate the time-averaged mean-squared displacement (TAMSD), the displacement probability-density function (PDF), and the displacement autocorrelation function (ACF) of the dimers. For the TAMSD at highly crowded conditions of dumbbells, e.g., we observe a transition from the short-time ballistic behavior, via an intermediate subdiffusive regime, to long-time Brownian-like spreading dynamics. The crowded system of dimers exhibits two distinct diffusion regimes distinguished by the scaling exponent of the TAMSD, the dependence of the diffusivity on phi, and the features of the displacement-ACF. We attribute these regimes to a crowding-induced transition from viscous to viscoelastic diffusion upon growing phi. We also analyze the relative motion in the dimers, finding that larger phi suppress their vibrations and yield strongly non-Gaussian PDFs of rotational displacements. For the diffusion coefficients D(phi) of translational and rotational motion of the dumbbells an exponential decay with phi for weak and a power-law variation D(phi) proportional to (phi - phi(star))(2.4) for strong crowding is found. A comparison of simulation results with theoretical predictions for D(phi) is discussed and some relevant experimental systems are overviewed. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.064603 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 6 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Vilk, Ohad A1 - Aghion, Erez A1 - Nathan, Ran A1 - Toledo, Sivan A1 - Metzler, Ralf A1 - Assaf, Michael T1 - Classification of anomalous diffusion in animal movement data using power spectral analysis JF - Journal of physics : A, Mathematical and theoretical N2 - The field of movement ecology has seen a rapid increase in high-resolution data in recent years, leading to the development of numerous statistical and numerical methods to analyse relocation trajectories. Data are often collected at the level of the individual and for long periods that may encompass a range of behaviours. Here, we use the power spectral density (PSD) to characterise the random movement patterns of a black-winged kite (Elanus caeruleus) and a white stork (Ciconia ciconia). The tracks are first segmented and clustered into different behaviours (movement modes), and for each mode we measure the PSD and the ageing properties of the process. For the foraging kite we find 1/f noise, previously reported in ecological systems mainly in the context of population dynamics, but not for movement data. We further suggest plausible models for each of the behavioural modes by comparing both the measured PSD exponents and the distribution of the single-trajectory PSD to known theoretical results and simulations. KW - diffusion KW - anomalous diffusion KW - power spectral analysis KW - ecological KW - movement data Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac7e8f SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 33 PB - IOP Publishing CY - Bristol ER - TY - JOUR A1 - Padash, Amin A1 - Sandev, Trifce A1 - Kantz, Holger A1 - Metzler, Ralf A1 - Chechkin, Aleksei T1 - Asymmetric Levy flights are more efficient in random search JF - Fractal and fractional N2 - We study the first-arrival (first-hitting) dynamics and efficiency of a one-dimensional random search model performing asymmetric Levy flights by leveraging the Fokker-Planck equation with a delta-sink and an asymmetric space-fractional derivative operator with stable index alpha and asymmetry (skewness) parameter beta. We find exact analytical results for the probability density of first-arrival times and the search efficiency, and we analyse their behaviour within the limits of short and long times. We find that when the starting point of the searcher is to the right of the target, random search by Brownian motion is more efficient than Levy flights with beta <= 0 (with a rightward bias) for short initial distances, while for beta>0 (with a leftward bias) Levy flights with alpha -> 1 are more efficient. When increasing the initial distance of the searcher to the target, Levy flight search (except for alpha=1 with beta=0) is more efficient than the Brownian search. Moreover, the asymmetry in jumps leads to essentially higher efficiency of the Levy search compared to symmetric Levy flights at both short and long distances, and the effect is more pronounced for stable indices alpha close to unity. KW - asymmetric Levy flights KW - first-arrival density KW - search efficiency Y1 - 2022 U6 - https://doi.org/10.3390/fractalfract6050260 SN - 2504-3110 VL - 6 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wang, Wei A1 - Cherstvy, Andrey G. A1 - Kantz, Holger A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - How different are the results of constant-rate resetting of anomalous-diffusion processes in terms of their ensemble-averaged versus time-averaged mean-squared displacements (MSDs versus TAMSDs) and how does stochastic resetting impact nonergodicity? We examine, both analytically and by simulations, the implications of resetting on the MSD- and TAMSD-based spreading dynamics of particles executing fractional Brownian motion (FBM) with a long-time memory, heterogeneous diffusion processes (HDPs) with a power-law space-dependent diffusivity D(x) = D0|x|gamma and their "combined" process of HDP-FBM. We find, inter alia, that the resetting dynamics of originally ergodic FBM for superdiffusive Hurst exponents develops disparities in scaling and magnitudes of the MSDs and mean TAMSDs indicating weak ergodicity breaking. For subdiffusive HDPs we also quantify the nonequivalence of the MSD and TAMSD and observe a new trimodal form of the probability density function. For reset FBM, HDPs and HDP-FBM we compute analytically and verify by simulations the short-time MSD and TAMSD asymptotes and long-time plateaus reminiscent of those for processes under confinement. We show that certain characteristics of these reset processes are functionally similar despite a different stochastic nature of their nonreset variants. Importantly, we discover nonmonotonicity of the ergodicitybreaking parameter EB as a function of the resetting rate r. For all reset processes studied we unveil a pronounced resetting-induced nonergodicity with a maximum of EB at intermediate r and EB similar to(1/r )-decay at large r. Alongside the emerging MSD-versus-TAMSD disparity, this r-dependence of EB can be an experimentally testable prediction. We conclude by discussing some implications to experimental systems featuring resetting dynamics. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.024105 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 2 PB - American Institute of Physics CY - Woodbury, NY ER - TY - JOUR A1 - Doerries, Timo J. A1 - Chechkin, Aleksei A1 - Schumer, Rina A1 - Metzler, Ralf T1 - Rate equations, spatial moments, and concentration profiles for mobile-immobile models with power-law and mixed waiting time distributions JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We present a framework for systems in which diffusion-advection transport of a tracer substance in a mobile zone is interrupted by trapping in an immobile zone. Our model unifies different model approaches based on distributed-order diffusion equations, exciton diffusion rate models, and random-walk models for multirate mobile-immobile mass transport. We study various forms for the trapping time dynamics and their effects on the tracer mass in the mobile zone. Moreover, we find the associated breakthrough curves, the tracer density at a fixed point in space as a function of time, and the mobile and immobile concentration profiles and the respective moments of the transport. Specifically, we derive explicit forms for the anomalous transport dynamics and an asymptotic power-law decay of the mobile mass for a Mittag-Leffler trapping time distribution. In our analysis we point out that even for exponential trapping time densities, transient anomalous transport is observed. Our results have direct applications in geophysical contexts, but also in biological, soft matter, and solid state systems. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevE.105.014105 SN - 2470-0045 SN - 2470-0053 SN - 2470-0061 VL - 105 IS - 1 PB - The American Institute of Physics CY - Woodbury, NY ER - TY - JOUR A1 - Sandev, Trifce A1 - Domazetoski, Viktor A1 - Kocarev, Ljupco A1 - Metzler, Ralf A1 - Chechkin, Aleksei T1 - Heterogeneous diffusion with stochastic resetting JF - Journal of physics : A, Mathematical and theoretical N2 - We study a heterogeneous diffusion process (HDP) with position-dependent diffusion coefficient and Poissonian stochastic resetting. We find exact results for the mean squared displacement and the probability density function. The nonequilibrium steady state reached in the long time limit is studied. We also analyse the transition to the non-equilibrium steady state by finding the large deviation function. We found that similarly to the case of the normal diffusion process where the diffusion length grows like t (1/2) while the length scale xi(t) of the inner core region of the nonequilibrium steady state grows linearly with time t, in the HDP with diffusion length increasing like t ( p/2) the length scale xi(t) grows like t ( p ). The obtained results are verified by numerical solutions of the corresponding Langevin equation. KW - heterogeneous diffusion KW - Fokker-Planck equation KW - Langevin equation KW - stochastic resetting KW - nonequilibrium stationary state KW - large deviation function Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac491c SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 7 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Petreska, Irina A1 - Pejov, Ljupco A1 - Sandev, Trifce A1 - Kocarev, LjupĨo A1 - Metzler, Ralf T1 - Tuning of the dielectric relaxation and complex susceptibility in a system of polar molecules: a generalised model based on rotational diffusion with resetting JF - Fractal and fractional N2 - The application of the fractional calculus in the mathematical modelling of relaxation processes in complex heterogeneous media has attracted a considerable amount of interest lately. The reason for this is the successful implementation of fractional stochastic and kinetic equations in the studies of non-Debye relaxation. In this work, we consider the rotational diffusion equation with a generalised memory kernel in the context of dielectric relaxation processes in a medium composed of polar molecules. We give an overview of existing models on non-exponential relaxation and introduce an exponential resetting dynamic in the corresponding process. The autocorrelation function and complex susceptibility are analysed in detail. We show that stochastic resetting leads to a saturation of the autocorrelation function to a constant value, in contrast to the case without resetting, for which it decays to zero. The behaviour of the autocorrelation function, as well as the complex susceptibility in the presence of resetting, confirms that the dielectric relaxation dynamics can be tuned by an appropriate choice of the resetting rate. The presented results are general and flexible, and they will be of interest for the theoretical description of non-trivial relaxation dynamics in heterogeneous systems composed of polar molecules. KW - rotational diffusion KW - memory kernel KW - Fokker-Planck equation KW - non-exponential relaxation KW - autocorrelation function KW - complex KW - susceptibility Y1 - 2022 U6 - https://doi.org/10.3390/fractalfract6020088 SN - 2504-3110 VL - 6 IS - 2 PB - MDPI AG, Fractal Fract Editorial Office CY - Basel ER - TY - JOUR A1 - Thapa, Samudrajit A1 - Park, Seongyu A1 - Kim, Yeongjin A1 - Jeon, Jae-Hyung A1 - Metzler, Ralf A1 - Lomholt, Michael A. T1 - Bayesian inference of scaled versus fractional Brownian motion JF - Journal of physics : A, mathematical and theoretical N2 - We present a Bayesian inference scheme for scaled Brownian motion, and investigate its performance on synthetic data for parameter estimation and model selection in a combined inference with fractional Brownian motion. We include the possibility of measurement noise in both models. We find that for trajectories of a few hundred time points the procedure is able to resolve well the true model and parameters. Using the prior of the synthetic data generation process also for the inference, the approach is optimal based on decision theory. We include a comparison with inference using a prior different from the data generating one. KW - Bayesian inference KW - scaled Brownian motion KW - single particle tracking Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac60e7 SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 19 PB - IOP Publ. Ltd. CY - Bristol ER -