TY - THES A1 - Engelhardt, Max Angel Ronan T1 - Zwischen Simulation und Beweis - eine mathematische Analyse des Bienaymé-Galton-Watson-Prozesses und sein Einsatz innerhalb des Mathematikunterrichts T1 - Between simulation and proof - a mathematical analysis of the Bienaymé-Galton-Watson-process and its application in mathematics lessons N2 - Die Bienaymé-Galton-Watson Prozesse können für die Untersuchung von speziellen und sich entwickelnden Populationen verwendet werden. Die Populationen umfassen Individuen, welche sich identisch, zufällig, selbstständig und unabhängig voneinander fortpflanzen und die jeweils nur eine Generation existieren. Die n-te Generation ergibt sich als zufällige Summe der Individuen der (n-1)-ten Generation. Die Relevanz dieser Prozesse begründet sich innerhalb der Historie und der inner- und außermathematischen Bedeutung. Die Geschichte der Bienaymé-Galton-Watson-Prozesse wird anhand der Entwicklung des Konzeptes bis heute dargestellt. Dabei werden die Wissenschaftler:innen verschiedener Disziplinen angeführt, die Erkenntnisse zu dem Themengebiet beigetragen und das Konzept in ihren Fachbereichen angeführt haben. Somit ergibt sich die außermathematische Signifikanz. Des Weiteren erhält man die innermathematische Bedeutsamkeit mittels des Konzeptes der Verzweigungsprozesse, welches auf die Bienaymé-Galton-Watson Prozesse zurückzuführen ist. Die Verzweigungsprozesse stellen eines der aussagekräftigsten Modelle für die Beschreibung des Populationswachstums dar. Darüber hinaus besteht die derzeitige Wichtigkeit durch die Anwendungsmöglichkeit der Verzweigungsprozesse und der Bienaymé-Galton-Watson Prozesse innerhalb der Epidemiologie. Es werden die Ebola- und die Corona-Pandemie als Anwendungsfelder angeführt. Die Prozesse dienen als Entscheidungsstütze für die Politik und ermöglichen Aussagen über die Auswirkungen von Maßnahmen bezüglich der Pandemien. Neben den Prozessen werden ebenfalls der bedingte Erwartungswert bezüglich diskreter Zufallsvariablen, die wahrscheinlichkeitserzeugende Funktion und die zufällige Summe eingeführt. Die Konzepte vereinfachen die Beschreibung der Prozesse und bilden somit die Grundlage der Betrachtungen. Außerdem werden die benötigten und weiterführenden Eigenschaften der grundlegenden Themengebiete und der Prozesse aufgeführt und bewiesen. Das Kapitel erreicht seinen Höhepunkt bei dem Beweis des Kritikalitätstheorems, wodurch eine Aussage über das Aussterben des Prozesses in verschiedenen Fällen und somit über die Aussterbewahrscheinlichkeit getätigt werden kann. Die Fälle werden anhand der zu erwartenden Anzahl an Nachkommen eines Individuums unterschieden. Es zeigt sich, dass ein Prozess bei einer zu erwartenden Anzahl kleiner gleich Eins mit Sicherheit ausstirbt und bei einer Anzahl größer als Eins, die Population nicht in jedem Fall aussterben muss. Danach werden einzelne Beispiele, wie der linear fractional case, die Population von Fibroblasten (Bindegewebszellen) von Mäusen und die Entstehungsfragestellung der Prozesse, angeführt. Diese werden mithilfe der erlangten Ergebnisse untersucht und einige ausgewählte zufällige Dynamiken werden im nachfolgenden Kapitel simuliert. Die Simulationen erfolgen durch ein in Python erstelltes Programm und werden mithilfe der Inversionsmethode realisiert. Die Simulationen stellen beispielhaft die Entwicklungen in den verschiedenen Kritikalitätsfällen der Prozesse dar. Zudem werden die Häufigkeiten der einzelnen Populationsgrößen in Form von Histogrammen angebracht. Dabei lässt sich der Unterschied zwischen den einzelnen Fällen bestätigen und es wird die Anwendungsmöglichkeit der Bienaymé-Galton-Watson Prozesse bei komplexeren Problemen deutlich. Histogramme bekräftigen, dass die einzelnen Populationsgrößen nur endlich oft vorkommen. Diese Aussage wurde von Galton aufgeworfen und in der Extinktions-Explosions-Dichotomie verwendet. Die dargestellten Erkenntnisse über das Themengebiet und die Betrachtung des Konzeptes werden mit einer didaktischen Analyse abgeschlossen. Die Untersuchung beinhaltet die Berücksichtigung der Fundamentalen Ideen, der Fundamentalen Ideen der Stochastik und der Leitidee „Daten und Zufall“. Dabei ergibt sich, dass in Abhängigkeit der gewählten Perspektive die Anwendung der Bienaymé-Galton-Watson Prozesse innerhalb der Schule plausibel ist und von Vorteil für die Schüler:innen sein kann. Für die Behandlung wird exemplarisch der Rahmenlehrplan für Berlin und Brandenburg analysiert und mit dem Kernlehrplan Nordrhein-Westfalens verglichen. Die Konzeption des Lehrplans aus Berlin und Brandenburg lässt nicht den Schluss zu, dass die Bienaymé-Galton-Watson Prozesse angewendet werden sollten. Es lässt sich feststellen, dass die zugrunde liegende Leitidee nicht vollumfänglich mit manchen Fundamentalen Ideen der Stochastik vereinbar ist. Somit würde eine Modifikation hinsichtlich einer stärkeren Orientierung des Lehrplans an den Fundamentalen Ideen die Anwendung der Prozesse ermöglichen. Die Aussage wird durch die Betrachtung und Übertragung eines nordrhein-westfälischen Unterrichtsentwurfes für stochastische Prozesse auf die Bienaymé-Galton-Watson Prozesse unterstützt. Darüber hinaus werden eine Concept Map und ein Vernetzungspentagraph nach von der Bank konzipiert um diesen Aspekt hervorzuheben. N2 - The Bienaymé-Galton-Watson processes can be used to study special and developing populations. These populations include individuals that reproduce identically, randomly, separately, independently of each other, and which exist only for one generation. The n-th generation is the random sum of the individuals of the (n-1)-th generation. The relevance of these processes is based on their history and their significance in mathematical and extra-mathematical contexts. The history of the Bienaymé-Galton-Watson processes is illustrated by the development of the concept to the present day. Various scientists from different disciplines who have contributed to the topic in their respective fields are listed. This illustrates moreover the significance in extra-mathematical contexts. Furthermore, the inner- mathematical magnitude is obtained by means of the superordinate concept of branching processes, which can be traced back to the Bienaymé-Galton-Watson processes. These branching processes are one of the most significant models for describing population growth. In addition, the current importance arises from the applicability of branching processes and the Bienaymé-Galton-Watson processes within epidemiology. The Ebola and Corona pandemics are mentioned as fields of application. The processes serve as a basis for political decision-making and enable statements made on the impact of pandemic measures. In addition to the processes, the conditional expectation value for discrete random variables, the probability generating function and the random sum are also introduced. These concepts simplify the description of the processes and thus form the basis of the considerations. Also, the required and further properties of the basic topics and processes are listed and demonstrated. The chapter reaches its climax with the proof of the criticality theorem, whereby a statement can be made about the extinction of the process in different cases and thus about the extinction probability. These cases are distinguished based on the expected number of offspring from the individuals. It turns out that a process with an expected number of less than one certainly becomes extinct. On the contrary, a process with a number greater than one does not necessarily has to die out. Individual examples are then given, such as the linear fractional case, the population of fibroblasts (connective tissue cells) of mice and the question of origin. These are investigated using the results obtained and some selected random dynamics are simulated in the following chapter. The simulations are carried out by a Python self-written program and are realized using the inversion method. These simulations exemplify the developments in the different criticality cases of the processes. Besides, the frequencies of the individual population sizes are displayed in the form of histograms. The difference between the individual cases can be confirmed and the analysis of the fibroblasts reveals the applicability of the Bienaymé-Galton-Watson processes to more complex problems. Histograms confirm that the individual population sizes occur only finitely often. This statement was raised by Galton and is used in the extinction-explosion dichotomy. The presented findings about the topic and the consideration of the concept are concluded with an analysis of didactic-background. This involves the fundamental ideas, the fundamental ideas of stochastics and the guiding idea of data and chance. Depending on the chosen perspective, the use of the Bienaymé-Galton-Watson processes within the school is plausible and may be beneficial for the students. For the treatment, the Rahmenlehrplan for Berlin and Brandenburg is analysed and compared with the core curriculum of Nord Rhine-Westphalia as an example. The design of the curriculum of Berlin and Brandenburg does not allow the conclusion of applying the Bienaymé-Galton-Watson processes. It can be seen that the underlying guiding idea is not fully compatible with some fundamental ideas of stochastics. Thus, a modification to the curriculum more oriented towards these fundamental ideas would allow the application of the processes. This statement is supported by the observation and transfer of a North Rhine-Westphalian teaching design for stochastic processes to the Bienaymé-Galton-Watson processes by means of chain letters. In addition, a concept map and a Vernetzungspentagraph by von der Bank are designed to highlight this aspect. KW - Bienaymé-Galton-Watson Prozess KW - Kritikalitätstheorem KW - Verzweigungsprozess KW - Populationen KW - linear fractional case KW - bedingter Erwartungswert KW - zufällige Summe KW - Simulation KW - wahrscheinlichkeitserzeugende Funktion KW - Historie der Verzweigungsprozesse KW - Instabilität des Prozesses KW - Aussterbewahrscheinlichkeit KW - Geometrische Reproduktionsverteilung KW - Fibroblasten KW - Entstehungsfragestellung KW - Fundamentale Ideen KW - Leitidee „Daten und Zufall“ KW - Rahmenlehrplan KW - Markov-Ketten KW - Corona KW - Bienaymé-Galton-Watson process KW - criticality theorem KW - branching process KW - populations KW - linear fractional case KW - conditional expectation value KW - random sum KW - simulation KW - probability generating function KW - history of branching processes KW - instability of the process KW - extinction probability KW - geometric reproduction distribution KW - fibroblasts KW - question of origin KW - fundamental ideas KW - guiding idea “Daten und Zufall” KW - Rahmenlehrplan KW - Markov chains KW - Corona Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-524474 ER - TY - THES A1 - Hübner, Andrea T1 - Ein multityper Verzweigungsprozess als Modell zur Untersuchung der Ausbreitung von Covid-19 T1 - Modeling the spread of Covid-19 using a multitype branching process N2 - Im Zuge der Covid-19 Pandemie werden zwei Werte täglich diskutiert: Die zuletzt gemeldete Zahl der neu Infizierten und die sogenannte Reproduktionsrate. Sie gibt wieder, wie viele weitere Menschen ein an Corona erkranktes Individuum im Durchschnitt ansteckt. Für die Schätzung dieses Wertes gibt es viele Möglichkeiten - auch das Robert Koch-Institut gibt in seinem täglichen Situationsbericht stets zwei R-Werte an: Einen 4-Tage-R-Wert und einen weniger schwankenden 7-Tage-R-Wert. Diese Arbeit soll eine weitere Möglichkeit vorstellen, einige Aspekte der Pandemie zu modellieren und die Reproduktionsrate zu schätzen. In der ersten Hälfte der Arbeit werden die mathematischen Grundlagen vorgestellt, die man für die Modellierung benötigt. Hierbei wird davon ausgegangen, dass der Leser bereits ein Basisverständnis von stochastischen Prozessen hat. Im Abschnitt Grundlagen werden Verzweigungsprozesse mit einigen Beispielen eingeführt und die Ergebnisse aus diesem Themengebiet, die für diese Arbeit wichtig sind, präsentiert. Dabei gehen wir zuerst auf einfache Verzweigungsprozesse ein und erweitern diese dann auf Verzweigungsprozesse mit mehreren Typen. Um die Notation zu erleichtern, beschränken wir uns auf zwei Typen. Das Prinzip lässt sich aber auf eine beliebige Anzahl von Typen erweitern. Vor allem soll die Wichtigkeit des Parameters λ herausgestellt werden. Dieser Wert kann als durchschnittliche Zahl von Nachfahren eines Individuums interpretiert werden und bestimmt die Dynamik des Prozesses über einen längeren Zeitraum. In der Anwendung auf die Pandemie hat der Parameter λ die gleiche Rolle wie die Reproduktionsrate R. In der zweiten Hälfte dieser Arbeit stellen wir eine Anwendung der Theorie über Multitype Verzweigungsprozesse vor. Professor Yanev und seine Mitarbeiter modellieren in ihrer Veröffentlichung Branching stochastic processes as models of Covid-19 epidemic development die Ausbreitung des Corona Virus' über einen Verzweigungsprozess mit zwei Typen. Wir werden dieses Modell diskutieren und Schätzer daraus ableiten: Ziel ist es, die Reproduktionsrate zu ermitteln. Außerdem analysieren wir die Möglichkeiten, die Dunkelziffer (die Zahl nicht gemeldeter Krankheitsfälle) zu schätzen. Wir wenden die Schätzer auf die Zahlen von Deutschland an und werten diese schließlich aus. N2 - During the Covid-19 pandemic, the discussion about the situation has been dominated by two numbers: the number of daily new infected individuals and the reproduction rate. The latter is the average number of people, one infected individual will infect with the disease. Because the number of registered infected individuals is generally not equal to the actual number of people who carry the Corona virus, many facts about the pandemic have to be estimated and can not be known for certain. Since the reproduction rate is an important parameter to signify the course of the Pandemic, many ways to estimate it have been developed. The Institute of Robert Koch in Germany uses two reproduction rates R in their daily reports: The 4-days-R-value and the less fluctuating 7-days-Rvalue. This master thesis will develop another model to estimate the R-value and other interesting aspects of the pandemic. The first part of this thesis is dedicated to the mathematical foundations needed to understand the model. The reader is expected to already have basic understanding of stochastic processes. In the section Grundlagen we will discuss branching processes and present the results of their theory that are important for our work. We start by introducing simple branching processes and expand the results to multitype branching processes. In service of a simpler notation we will only consider twotype branching processes, but the results can be used for any number of types. The importance of the parameter λ shall be stressed. It can be seen as the average number of descendants of one individual and dictates the dynamic of the process over a long period of time. Applied to the modeling of the pandemic, λ plays the same role as the reproduction rate R. In the second part of this thesis will present an application of the previously developed theory about multitype branching processes. Prof. Yanev and his colleagues modeled in their publication Branching stochastic processes as models of Covid-19 epidemic development the spreading of the Corona virus by using a branching process with two types. We will discuss this model and deduce estimators from it. We want to estimate the reproduction rate and find a way to determine the number of not registered infected individuals. The estimators will be applied to the data from Germany and we will discuss the results. KW - Covid-19 KW - Corona KW - Reproduktionsrate KW - Verzweigungsprozess KW - Modellierung KW - Covid-19 KW - corona virus KW - reproduction rate KW - branching process KW - modeling Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-509225 ER -