TY - JOUR A1 - Schweigert, Florian J. A1 - Gericke, Beate A1 - Wolfram, Wiebke A1 - Kaisers, Udo A1 - Dudenhausen, Joachim W. T1 - Peptide and protein profiles in serum and follicular fluid of women undergoing IVF JF - Human reproduction N2 - BACKGROUND: Proteins and peptides in human follicular fluid originate from plasma or are produced by follicular structures. Compositional changes reflect oocyte maturation and can be used as diagnostic markers. The aim of the study was to determine protein and peptide profiles in paired serum and follicular fluid samples from women undergoing IVF. METHODS: Surface-enhanced laser desorption and ionization-time of flight-mass spectrometry (SELDI-TOF-MS) was used to obtain characteristic protein pattern. RESULTS: One hundred and eighty-six individual MS signals were obtained from a combination of enrichment on strong anion exchanger (110), weak cation exchanger (52) and normal phase surfaces (24). On the basis of molecular masses, isoelectric points and immunoreactivety, four signals were identified as haptoglobin (alpha(1)- and alpha(2)-chain), haptoglobin 1 and transthyretin (TTR). Immunological and MS characteristics of the TTR : retinol-binding protein (RBP) transport complex revealed no microheterogeneity differences between serum and follicular fluid. Discriminatory patterns arising from decision-tree-based classification and regression analysis distinguished between serum and follicular fluid with a sensitivity and specificity of 100%. CONCLUSIONS: Quantitative and qualitative differences indicate selective transport processes rather than mere filtration across the blood-follicle barrier. Identified proteins as well as characteristic peptide and/or protein signatures might emerge as potential candidates for diagnostic markers of follicle and/or oocyte maturation and thus oocyte quality. KW - human follicular fluid KW - peptide KW - protein KW - proteome KW - serum Y1 - 2006 U6 - https://doi.org/10.1093/humrep/del257 SN - 0268-1161 VL - 21 IS - 11 SP - 2960 EP - 2968 PB - Univ. Press CY - Oxford ER - TY - GEN A1 - Henze, Andrea A1 - Homann, Thomas A1 - Rohn, Isabelle A1 - Aschner, Michael A. A1 - Link, Christopher D. A1 - Kleuser, Burkhard A1 - Schweigert, Florian J. A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin N2 - The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time- and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization – time of flight – mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 312 KW - binding KW - c. elegans KW - cells KW - disease KW - force-field KW - life-span KW - menadione KW - n-acetyl-cysteine KW - protein KW - s-glutathionylation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-103674 ER - TY - JOUR A1 - Henze, Andrea A1 - Homann, Thomas A1 - Rohn, Isabelle A1 - Aschner, Michael A. A1 - Link, Christopher D. A1 - Kleuser, Burkhard A1 - Schweigert, Florian J. A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin JF - Scientific reports N2 - The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time- and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization – time of flight – mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling. KW - n-acetyl-cysteine KW - s-glutathionylation KW - force-field KW - c. elegans KW - life-span KW - protein KW - cells KW - menadione KW - disease KW - binding Y1 - 2016 U6 - https://doi.org/10.1038/srep37346 SN - 2045-2322 VL - 6 PB - Nature Publishing Group CY - London ER -