TY - JOUR A1 - Fortes Martín, Rebeca A1 - Thünemann, Andreas F. A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Koetz, Joachim T1 - From nanoparticle heteroclusters to filament networks by self-assembly at the water-oil interface of reverse microemulsions JF - Langmuir : the ACS journal of surfaces and colloids / American Chemical Society N2 - Surface self-assembly of spherical nanoparticles of sizes below 10 nm into hierarchical heterostructures is under arising development despite the inherent difficulties of obtaining complex ordering patterns on a larger scale. Due to template-mediated interactions between oil-dispersible superparamagnetic nanoparticles (MNPs) and polyethylenimine- stabilized gold nanoparticles (Au(PEI)NPs) at the water-oil interface of microemulsions, complex nanostructured films can be formed. Characterization of the reverse microemulsion phase by UV-vis absorption revealed the formation of heteroclusters from Winsor type II phases (WPII) using Aerosol-OT (AOT) as the surfactant. SAXS measurements verify the mechanism of initial nanoparticle clustering in defined dimensions. XPS suggested an influence of AOT at the MNP surface. Further, cryo-SEM and TEM visualization demonstrated the elongation of the reverse microemulsions into cylindrical, wormlike structures, which subsequently build up larger nanoparticle superstructure arrangements. Such WPII phases are thus proven to be a new form of soft template, mediating the self-assembly of different nanoparticles in hierarchical network-like filaments over a substrate during solvent evaporation. KW - Emulsions KW - Liquids KW - Nanoparticles KW - Water KW - X-ray scattering Y1 - 2021 U6 - https://doi.org/10.1021/acs.langmuir.1c01348 SN - 0743-7463 VL - 37 IS - 29 SP - 8876 EP - 8885 PB - American Chemical Society CY - Washington ER -