TY - JOUR A1 - Cramer, Sandra A1 - Tacke, Sebastian A1 - Bornhorst, Julia A1 - Klingauf, Jürgen A1 - Schwerdtle, Tanja A1 - Galla, Hans-Joachim T1 - The Influence of Silver Nanoparticles on the Blood-Brain and the Blood-Cerebrospinal Fluid Barrier in vitro JF - Journal of Nanomedicine & Nanotechnology N2 - The use of silver nanoparticles in medical and consumer products such as wound dressings, clothing and cosmetic has increased significantly in recent years. Still, the influence of these particles on our health and especially on our brain, has not been examined adequately up to now. We studied the influence of AgEO- (Ethylene Oxide) and AgCitrate-Nanoparticles (NPs) on the protective barriers of the brain, namely the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (blood-CSF) barrier in vitro. The NPs toxicity was evaluated by examining changes in membrane integrity, cell morphology, barrier properties, oxidative stress and inflammatory reactions. AgNPs decreased cell viability, disturbed barrier integrity and tight junctions and triggered oxidative stress and DNA strand breaks. However, all mentioned effects were, at least partly, suppressed by a Citrate-coating and were most pronounced in the cells of the BBB as compared to the epithelial cells representing the blood-CSF barrier. AgEO- but not AgCitrate-NPs also triggered an inflammatory reaction in porcine brain capillary endothelial cells (PBCEC), which represent the BBB. Our data indicate that AgNPs may cause adverse effects within the barriers of the brain, but their toxicity can be reduced by choosing an appropriate coating material. Y1 - 2014 U6 - https://doi.org/10.4172/2157-7439.1000225 SN - 2157-7439 VL - 5 IS - 5 ER - TY - JOUR A1 - Pieper, Imke A1 - Wehe, Christoph A. A1 - Bornhorst, Julia A1 - Ebert, Franziska A1 - Leffers, Larissa A1 - Holtkamp, Michael A1 - Hoeseler, Pia A1 - Weber, Till A1 - Mangerich, Aswin A1 - Buerkle, Alexander A1 - Karst, Uwe A1 - Schwerdtle, Tanja T1 - Mechanisms of Hg species induced toxicity in cultured human astrocytes: genotoxicity and DNA-damage response JF - Metallomics : integrated biometal science N2 - The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co- genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl) ation contributes to organic Hg induced neurotoxicity. Y1 - 2014 U6 - https://doi.org/10.1039/c3mt00337j SN - 1756-5901 SN - 1756-591X VL - 6 IS - 3 SP - 662 EP - 671 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Pieper, Imke A1 - Wehe, Christoph A. A1 - Bornhorst, Julia A1 - Ebert, Franziska A1 - Leffers, Larissa A1 - Holtkamp, Michael A1 - Höseler, Pia A1 - Weber, Till A1 - Mangerich, Aswin A1 - Bürkle, Alexander A1 - Karst, Uwe A1 - Schwerdtle, Tanja T1 - Mechanisms of Hg species induced toxicity in cultured human astrocytes BT - genotoxicity and DNA-damage response N2 - The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co- genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl) ation contributes to organic Hg induced neurotoxicity. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 171 KW - adduct formation KW - cell-death KW - exposure KW - manganese KW - methylmercury KW - neurodegenerative diseases KW - neurotoxicity KW - poly(ADP-ribose) polymerase-1 KW - repair KW - thimerosal Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74379 SP - 662 EP - 671 ER - TY - JOUR A1 - Pieper, Imke A1 - Wehe, Christoph A. A1 - Bornhorst, Julia A1 - Ebert, Franziska A1 - Leffers, Larissa A1 - Holtkamp, Michael A1 - Höseler, Pia A1 - Weber, Till A1 - Mangerich, Aswin A1 - Bürkle, Alexander A1 - Karst, Uwe A1 - Schwerdtle, Tanja T1 - Mechanisms of Hg species induced toxicity in cultured human astrocytes BT - genotoxicity and DNA-damage response JF - Metallomics N2 - The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co-genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl)ation contributes to organic Hg induced neurotoxicity. KW - cell-death KW - poly(ADP-ribose) polymerase-1 KW - neurodegenerative diseases KW - adduct formation KW - thimerosal KW - methylmercury KW - repair KW - neurotoxicity KW - manganese KW - exposure Y1 - 2014 U6 - https://doi.org/10.1039/c3mt00337j SN - 1756-591X SN - 1756-5901 VL - 2014 IS - 6 SP - 662 EP - 671 ER -