TY - JOUR A1 - Schroeter, Kai A1 - Kreibich, Heidi A1 - Vogel, Kristin A1 - Riggelsen, Carsten A1 - Scherbaum, Frank A1 - Merz, Bruno T1 - How useful are complex flood damage models? JF - Water resources research N2 - We investigate the usefulness of complex flood damage models for predicting relative damage to residential buildings in a spatial and temporal transfer context. We apply eight different flood damage models to predict relative building damage for five historic flood events in two different regions of Germany. Model complexity is measured in terms of the number of explanatory variables which varies from 1 variable up to 10 variables which are singled out from 28 candidate variables. Model validation is based on empirical damage data, whereas observation uncertainty is taken into consideration. The comparison of model predictive performance shows that additional explanatory variables besides the water depth improve the predictive capability in a spatial and temporal transfer context, i.e., when the models are transferred to different regions and different flood events. Concerning the trade-off between predictive capability and reliability the model structure seem more important than the number of explanatory variables. Among the models considered, the reliability of Bayesian network-based predictions in space-time transfer is larger than for the remaining models, and the uncertainties associated with damage predictions are reflected more completely. KW - floods KW - damage KW - model validation KW - Bayesian networks KW - regression tree Y1 - 2014 U6 - https://doi.org/10.1002/2013WR014396 SN - 0043-1397 SN - 1944-7973 VL - 50 IS - 4 SP - 3378 EP - 3395 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Kühn, Nico M. A1 - Scherbaum, Frank T1 - Ground-motion prediction model building: a multilevel approach JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - A Bayesian ground-motion model is presented that directly estimates the coefficients of the model and the correlation between different ground-motion parameters of interest. The model is developed as a multi-level model with levels for earthquake, station and record terms. This separation allows to estimate residuals for each level and thus the estimation of the associated aleatory variability. In particular, the usually estimated within-event variability is split into a between-station and between-record variability. In addition, the covariance structure between different ground-motion parameters of interest is estimated for each level, i.e. directly the between-event, between-station and between-record correlation coefficients are available. All parameters of the model are estimated via Bayesian inference, which allows to assess their epistemic uncertainty in a principled way. The model is developed using a recently compiled European strong-motion database. The target variables are peak ground velocity, peak ground acceleration and spectral acceleration at eight oscillator periods. The model performs well with respect to its residuals, and is similar to other ground-motion models using the same underlying database. The correlation coefficients are similar to those estimated for other parts of the world, with nearby periods having a high correlation. The between-station, between-event and between-record correlations follow generally a similar trend. KW - Ground-motion prediction equation KW - Probabilistic seismic hazard analysis and Bayesian inference KW - Multilevel model KW - Correlation KW - Single-station sigma Y1 - 2015 U6 - https://doi.org/10.1007/s10518-015-9732-3 SN - 1570-761X SN - 1573-1456 VL - 13 IS - 9 SP - 2481 EP - 2491 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Douglas, John A1 - Bungum, Hilmar A1 - Scherbaum, Frank T1 - Ground-motion prediction equations for Southern Spain and Southern Norway obtained using the composite model perspective N2 - In this paper, two sets of earthquake ground-motion relations to estimate peak ground and response spectral acceleration are developed for sites in southern Spain and in southern Norway using a recently published composite approach. For this purpose seven empirical ground-motion relations developed from recorded strong-motion data from different parts of the world were employed. The different relations were first adjusted based on a number of transformations to convert the differing choices of independent parameters to a single one. After these transformations, which include the scatter introduced, were performed, the equations were modified to account for differences between the host and the target regions using the stochastic method to compute the host-to-target conversion factors. Finally functions were fitted to the derived ground-motion estimates to obtain sets of seven individual equations for use in probabilistic seismic hazard assessment for southern Spain and southern Norway. The relations are compared with local ones published for the two regions. The composite methodology calls for the setting up of independent logic trees for the median values and for the sigma values, in order to properly separate epistemic and aleatory uncertainties after the corrections and the conversions Y1 - 2006 UR - http://www.informaworld.com/openurl?genre=journal&issn=1363-2469 U6 - https://doi.org/10.1080/1363246060935058 SN - 1363-2469 ER - TY - JOUR A1 - Suryanto, Wiwit A1 - Igel, Heiner A1 - Wassermann, Joachim A1 - Cochard, Alain A1 - Schuberth, B. S. A. A1 - Vollmer, Daniel A1 - Scherbaum, Frank A1 - Schreiber, U. A1 - Velikoseltsev, A. T1 - First comparison of array-derived rotational ground motions with direct ring laser measurements JF - Bulletin of the Seismological Society of America N2 - Recently, ring laser technology has provided the first consistent observations of rotational ground motions around a vertical axis induced by earthquakes. "Consistent," in this context, implies that the observed waveforms and amplitudes are compatible with collocated recordings of translational ground motions. In particular, transverse accelerations should be in phase with rotation rate and their ratio proportional to local horizontal phase velocity assuming plane-wave propagation. The ring laser installed at the Fundamental station Wettzell in the Bavarian Forest, Southeast Germany, is recording the rotation rate around a vertical axis, theoretically a linear combination of the space derivatives of the horizontal components of motion. This suggests that, in principle, rotation can be derived from seismic-array experiments by "finite differencing." This has been attempted previously in several studies; however, the accuracy of these observations could never be tested in the absence of direct measurements. We installed a double cross-shaped array of nine stations from December 2003 to March 2004 around the ring laser instrument and observed several large earthquakes on both the ring laser and the seismic array. Here we present for the first time a comparison of array-derived rotations with direct measurements of rotations for ground motions induced by the M 6.3 Al Hoceima, Morocco, earthquake of 24 February 2004. With complete 3D synthetic seismograms calculated for this event we show that even low levels of noise may considerably influence the accuracy of the array-derived rotations when the minimum number of required stations (three) is used. Nevertheless, when using all nine stations, the overall fit between direct and array-derived measurements is surprisingly good (maximum correlation coefficient of 0.94). Y1 - 2006 U6 - https://doi.org/10.1785/0120060004 SN - 0037-1106 SN - 1943-3573 VL - 96 IS - 6 SP - 2059 EP - 2071 PB - GeoScienceWorld CY - Alexandria, Va. ER - TY - JOUR A1 - Scherbaum, Frank A1 - Bouin, M. P. T1 - FIR filter effects and nucleation phases Y1 - 1997 ER - TY - JOUR A1 - Esfahani, Reza Dokht Dolatabadi A1 - Vogel, Kristin A1 - Cotton, Fabrice A1 - Ohrnberger, Matthias A1 - Scherbaum, Frank A1 - Kriegerowski, Marius T1 - Exploring the dimensionality of ground-motion data by applying autoencoder techniques JF - Bulletin of the Seismological Society of America : BSSA N2 - In this article, we address the question of how observed ground-motion data can most effectively be modeled for engineering seismological purposes. Toward this goal, we use a data-driven method, based on a deep-learning autoencoder with a variable number of nodes in the bottleneck layer, to determine how many parameters are needed to reconstruct synthetic and observed ground-motion data in terms of their median values and scatter. The reconstruction error as a function of the number of nodes in the bottleneck is used as an indicator of the underlying dimensionality of ground-motion data, that is, the minimum number of predictor variables needed in a ground-motion model. Two synthetic and one observed datasets are studied to prove the performance of the proposed method. We find that mapping ground-motion data to a 2D manifold primarily captures magnitude and distance information and is suited for an approximate data reconstruction. The data reconstruction improves with an increasing number of bottleneck nodes of up to three and four, but it saturates if more nodes are added to the bottleneck. Y1 - 2021 U6 - https://doi.org/10.1785/0120200285 SN - 0037-1106 SN - 1943-3573 VL - 111 IS - 3 SP - 1563 EP - 1576 PB - Seismological Society of America CY - El Cerito, Calif. ER - TY - JOUR A1 - Deichmann, N. A1 - Ansorge, Jörg A1 - Scherbaum, Frank A1 - Aschwanden, Andy A1 - Bernadi, F. A1 - Gudmundsson, Gudmundur Hilmar T1 - Evidence for deep icequakes in an alpine glacier Y1 - 1999 ER - TY - JOUR A1 - Musson, R. M. W. A1 - Toro, G. R. A1 - Coppersmith, Kevin J. A1 - Bommer, Julian J. A1 - Deichmann, N. A1 - Bungum, Hilmar A1 - Cotton, Fabrice A1 - Scherbaum, Frank A1 - Slejko, Dario A1 - Abrahamson, Norman A. T1 - Evaluating hazard results for Switzerland and how not to do it : a discussion of "Problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants" by J-U Klugel N2 - The PEGASOS project was a major international seismic hazard study, one of the largest ever conducted anywhere in the world, to assess seismic hazard at four nuclear power plant sites in Switzerland. Before the report of this project has become publicly available, a paper attacking both methodology and results has appeared. Since the general scientific readership may have difficulty in assessing this attack in the absence of the report being attacked, we supply a response in the present paper. The bulk of the attack, besides some misconceived arguments about the role of uncertainties in seismic hazard analysis, is carried by some exercises that purport to be validation exercises. In practice, they are no such thing; they are merely independent sets of hazard calculations based on varying assumptions and procedures, often rather questionable, which come up with various different answers which have no particular significance. (C) 2005 Elsevier B.V. All rights reserved Y1 - 2005 ER - TY - JOUR A1 - Hainzl, Sebastian A1 - Scherbaum, Frank A1 - Beauval, Céline T1 - Estimating background activity based on interevent-time distribution N2 - The statistics of time delays between successive earthquakes has recently been claimed to be universal and to show the existence of clustering beyond the duration of aftershock bursts. We demonstrate that these claims are unjustified. Stochastic simulations with Poissonian background activity and triggered Omori-type aftershock sequences are shown to reproduce the interevent-time distributions observed on different spatial and magnitude scales in California. Thus the empirical distribution can be explained without any additional long-term clustering. Furthermore, we find that the shape of the interevent-time distribution, which can be approximated by the gamma distribution, is determined by the percentage of main-shocks in the catalog. This percentage can be calculated by the mean and variance of the interevent times and varies between 5% and 90% for different regions in California. Our investigation of stochastic simulations indicates that the interevent-time distribution provides a nonparametric reconstruction of the mainshock magnitude-frequency distribution that is superior to standard declustering algorithm Y1 - 2006 UR - http://bssa.geoscienceworld.org/ U6 - https://doi.org/10.1785/0120050053 SN - 0037-1106 ER - TY - JOUR A1 - Scherbaum, Frank A1 - Krüger, Frank A1 - Weber, Michael H. T1 - Double beam imaging : mapping lower mantle heterogeneities using combinations of source and receiver arrays Y1 - 1997 ER - TY - JOUR A1 - Scherbaum, Frank A1 - Schmidtke, E. T1 - Digital seismology tutor Y1 - 2001 ER - TY - JOUR A1 - Bora, Sanjay Singh A1 - Scherbaum, Frank A1 - Kühn, Nicolas A1 - Stafford, Peter A1 - Edwards, Benjamin T1 - Development of a Response Spectral Ground-Motion Prediction Equation (GMPE) for Seismic-Hazard Analysis from Empirical Fourier Spectral and Duration Models JF - Bulletin of the Seismological Society of America N2 - Empirical ground-motion prediction equations (GMPEs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This article presents a holistic framework for the development of a response spectral GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain. The approach for developing a response spectral GMPE is unique, because it combines the predictions of empirical models for the two model components that characterize the spectral and temporal behavior of the ground motion. Essentially, as described in its initial form by Bora et al. (2014), the approach consists of an empirical model for the Fourier amplitude spectrum (FAS) and a model for the ground-motion duration. These two components are combined within the random vibration theory framework to obtain predictions of response spectral ordinates. In addition, FAS corresponding to individual acceleration records are extrapolated beyond the useable frequencies using the stochastic FAS model, obtained by inversion as described in Edwards and Fah (2013a). To that end, a (oscillator) frequency-dependent duration model, consistent with the empirical FAS model, is also derived. This makes it possible to generate a response spectral model that is easily adjustable to different sets of seismological parameters, such as the stress parameter Delta sigma, quality factor Q, and kappa kappa(0). The dataset used in Bora et al. (2014), a subset of the RESORCE-2012 database, is considered for the present analysis. Based upon the range of the predictor variables in the selected dataset, the present response spectral GMPE should be considered applicable over the magnitude range of 4 <= M-w <= 7.6 at distances <= 200 km. Y1 - 2015 U6 - https://doi.org/10.1785/0120140297 SN - 0037-1106 SN - 1943-3573 VL - 105 IS - 4 SP - 2192 EP - 2218 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Hiemer, Stefan A1 - Scherbaum, Frank A1 - Rößler, Dirk A1 - Kühn, Nicolas T1 - Determination of tau(0) and Rock Site kappa from Records of the 2008/2009 Earthquake Swarm in Western Bohemia JF - Seismological research letters Y1 - 2011 U6 - https://doi.org/10.1785/gssrl.82.3.387 SN - 0895-0695 VL - 82 IS - 3 SP - 387 EP - 393 PB - Seismological Society of America CY - El Cerrito ER - TY - JOUR A1 - Ohrnberger, Matthias A1 - Wassermann, Jürgen A1 - Scherbaum, Frank A1 - Budi, E. N. A1 - Gossler, J. T1 - Detection and classification of seismic signals of volcanic origin at Mt. Merapi (Indonesia) Y1 - 1999 ER - TY - JOUR A1 - Kühn, Nicolas M. A1 - Scherbaum, Frank A1 - Riggelsen, Carsten T1 - Deriving empirical ground-motion models : balancing data constraints and physical assumptions to optimize prediction capability N2 - Empirical ground-motion models used in seismic hazard analysis are commonly derived by regression of observed ground motions against a chosen set of predictor variables. Commonly, the model building process is based on residual analysis and/or expert knowledge and/or opinion, while the quality of the model is assessed by the goodness-of-fit to the data. Such an approach, however, bears no immediate relation to the predictive power of the model and with increasing complexity of the models is increasingly susceptible to the danger of overfitting. Here, a different, primarily data-driven method for the development of ground-motion models is proposed that makes use of the notion of generalization error to counteract the problem of overfitting. Generalization error directly estimates the average prediction error on data not used for the model generation and, thus, is a good criterion to assess the predictive capabilities of a model. The approach taken here makes only few a priori assumptions. At first, peak ground acceleration and response spectrum values are modeled by flexible, nonphysical functions (polynomials) of the predictor variables. The inclusion of a particular predictor and the order of the polynomials are based on minimizing generalization error. The approach is illustrated for the next generation of ground-motion attenuation dataset. The resulting model is rather complex, comprising 48 parameters, but has considerably lower generalization error than functional forms commonly used in ground-motion models. The model parameters have no physical meaning, but a visual interpretation is possible and can reveal relevant characteristics of the data, for example, the Moho bounce in the distance scaling. In a second step, the regression model is approximated by an equivalent stochastic model, making it physically interpretable. The resulting resolvable stochastic model parameters are comparable to published models for western North America. In general, for large datasets generalization error minimization provides a viable method for the development of empirical ground-motion models. Y1 - 2009 UR - http://bssa.geoscienceworld.org/ U6 - https://doi.org/10.1785/0120080136 SN - 0037-1106 ER - TY - JOUR A1 - Molkenthin, Christian A1 - Scherbaum, Frank A1 - Griewank, Andreas A1 - Leovey, Hernan A1 - Kucherenko, Sergei A1 - Cotton, Fabrice T1 - Derivative-Based Global Sensitivity Analysis: Upper Bounding of Sensitivities in Seismic-Hazard Assessment Using Automatic Differentiation JF - Bulletin of the Seismological Society of America N2 - Seismic-hazard assessment is of great importance within the field of engineering seismology. Nowadays, it is common practice to define future seismic demands using probabilistic seismic-hazard analysis (PSHA). Often it is neither obvious nor transparent how PSHA responds to changes in its inputs. In addition, PSHA relies on many uncertain inputs. Sensitivity analysis (SA) is concerned with the assessment and quantification of how changes in the model inputs affect the model response and how input uncertainties influence the distribution of the model response. Sensitivity studies are challenging primarily for computational reasons; hence, the development of efficient methods is of major importance. Powerful local (deterministic) methods widely used in other fields can make SA feasible, even for complex models with a large number of inputs; for example, automatic/algorithmic differentiation (AD)-based adjoint methods. Recently developed derivative-based global sensitivity measures can combine the advantages of such local SA methods with efficient sampling strategies facilitating quantitative global sensitivity analysis (GSA) for complex models. In our study, we propose and implement exactly this combination. It allows an upper bounding of the sensitivities involved in PSHA globally and, therefore, an identification of the noninfluential and the most important uncertain inputs. To the best of our knowledge, it is the first time that derivative-based GSA measures are combined with AD in practice. In addition, we show that first-order uncertainty propagation using the delta method can give satisfactory approximations of global sensitivity measures and allow a rough characterization of the model output distribution in the case of PSHA. An illustrative example is shown for the suggested derivative-based GSA of a PSHA that uses stochastic ground-motion simulations. Y1 - 2017 U6 - https://doi.org/10.1785/0120160185 SN - 0037-1106 SN - 1943-3573 VL - 107 SP - 984 EP - 1004 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Rietbrock, Andreas A1 - Scherbaum, Frank T1 - Crustal scattering at the KTB from a combined microearthquake and receiver analysis Y1 - 1998 ER - TY - JOUR A1 - Scherbaum, Frank A1 - Bommer, Julian J. A1 - Bungum, Hilmar A1 - Cotton, Fabrice A1 - Abrahamson, Norman A. T1 - Composite ground-motion models and logic trees: Methodology, sensitivities, and uncertainties N2 - Logic trees have become a popular tool in seismic hazard studies. Commonly, the models corresponding to the end branches of the complete logic tree in a probabalistic seismic hazard analysis (PSHA) are treated separately until the final calculation of the set of hazard curves. This comes at the price that information regarding sensitivities and uncertainties in the ground-motion sections of the logic tree are only obtainable after disaggregation. Furthermore, from this end-branch model perspective even the designers of the logic tree cannot directly tell what ground-motion scenarios most likely would result from their logic trees for a given earthquake at a particular distance, nor how uncertain these scenarios might be or how they would be affected by the choices of the hazard analyst. On the other hand, all this information is already implicitly present in the logic tree. Therefore, with the ground-motion perspective that we propose in the present article, we treat the ground-motion sections of a complete logic tree for seismic hazard as a single composite model representing the complete state-of-knowledge-and-belief of a particular analyst on ground motion in a particular target region. We implement this view by resampling the ground-motion models represented in the ground-motion sections of the logic tree by Monte Carlo simulation (separately for the median values and the sigma values) and then recombining the sets of simulated values in proportion to their logic-tree branch weights. The quantiles of this resampled composite model provide the hazard analyst and the decision maker with a simple, clear, and quantitative representation of the overall physical meaning of the ground-motion section of a logic tree and the accompanying epistemic uncertainty. Quantiles of the composite model also provide an easy way to analyze the sensitivities and uncertainties related to a given logic-tree model. We illustrate this for a composite ground- motion model for central Europe. Further potential fields of applications are seen wherever individual best estimates of ground motion have to be derived from a set of candidate models, for example, for hazard rnaps, sensitivity studies, or for modeling scenario earthquakes Y1 - 2005 SN - 0037-1106 ER - TY - JOUR A1 - Douglas, John A1 - Akkar, Sinan A1 - Ameri, Gabriele A1 - Bard, Pierre-Yves A1 - Bindi, Dino A1 - Bommer, Julian J. A1 - Bora, Sanjay Singh A1 - Cotton, Fabrice A1 - Derras, Boumediene A1 - Hermkes, Marcel A1 - Kuehn, Nicolas Martin A1 - Luzi, Lucia A1 - Massa, Marco A1 - Pacor, Francesca A1 - Riggelsen, Carsten A1 - Sandikkaya, M. Abdullah A1 - Scherbaum, Frank A1 - Stafford, Peter J. A1 - Traversa, Paola T1 - Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - This article presents comparisons among the five ground-motion models described in other articles within this special issue, in terms of data selection criteria, characteristics of the models and predicted peak ground and response spectral accelerations. Comparisons are also made with predictions from the Next Generation Attenuation (NGA) models to which the models presented here have similarities (e.g. a common master database has been used) but also differences (e.g. some models in this issue are nonparametric). As a result of the differing data selection criteria and derivation techniques the predicted median ground motions show considerable differences (up to a factor of two for certain scenarios), particularly for magnitudes and distances close to or beyond the range of the available observations. The predicted influence of style-of-faulting shows much variation among models whereas site amplification factors are more similar, with peak amplification at around 1s. These differences are greater than those among predictions from the NGA models. The models for aleatory variability (sigma), however, are similar and suggest that ground-motion variability from this region is slightly higher than that predicted by the NGA models, based primarily on data from California and Taiwan. KW - Strong-motion data KW - Ground-motion models KW - Ground-motion prediction equations KW - Style of faulting KW - Site amplification KW - Aleatory variability KW - Epistemic uncertainty KW - Europe KW - Middle East Y1 - 2014 U6 - https://doi.org/10.1007/s10518-013-9522-8 SN - 1570-761X SN - 1573-1456 VL - 12 IS - 1 SP - 341 EP - 358 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Dahm, Torsten A1 - Kuehn, Daniela A1 - Ohrnberger, Matthias A1 - Kroeger, Jens A1 - Wiederhold, Helga A1 - Reuther, Claus-Dieter A1 - Dehghani, Ali A1 - Scherbaum, Frank T1 - Combining geophysical data sets to study the dynamics of shallow evaporites in urban environments : application to Hamburg, Germany N2 - Shallowly situated evaporites in built-up areas are of relevance for urban and cultural development and hydrological regulation. The hazard of sinkholes, subrosion depressions and gypsum karst is often difficult to evaluate and may quickly change with anthropogenic influence. The geophysical exploration of evaporites in metropolitan areas is often not feasible with active industrial techniques. We collect and combine different passive geophysical data as microgravity, ambient vibrations, deformation and hydrological information to study the roof morphology of shallow evaporites beneath Hamburg, Northern Germany. The application of a novel gravity inversion technique leads to a 3-D depth model of the salt diapir under study. We compare the gravity-based depth model to pseudo-depths from H/V measurements and depth estimates from small-scale seismological array data. While the general range and trend of the diapir roof is consistent, a few anomalous regions are identified where H/V pseudo-depths indicate shallower structures not observed in gravity or array data. These are interpreted by shallow residual caprock floaters and zones of increased porosity. The shallow salt structure clearly correlates with a relative subsidence in the order of 2 mm yr(-1). The combined interpretation of roof morphology, yearly subsidence rates, chemical analyses of groundwater and of hydraulic head in aquifers indicates that the salt diapir beneath Hamburg is subject to significant ongoing dissolution that may possibly affect subrosion depressions, sinkhole distribution and land usage. The combined analysis of passive geophysical data may be exemplary for the study of shallow evaporites beneath other urban areas. Y1 - 2010 UR - http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-246X U6 - https://doi.org/10.1111/j.1365-246X.2010.04521.x SN - 0956-540X ER - TY - JOUR A1 - Diallo, Mamadou Sanou A1 - Kulesh, Michail A1 - Holschneider, Matthias A1 - Scherbaum, Frank A1 - Adler, Frank T1 - Characterization of polarization attributes of seismic waves using continuous wavelet transforms N2 - Complex-trace analysis is the method of choice for analyzing polarized data. Because particle motion can be represented by instantaneous attributes that show distinct features for waves of different polarization characteristics, it can be used to separate and characterize these waves. Traditional methods of complex-trace analysis only give the instantaneous attributes as a function of time or frequency. However. for transient wave types or seismic events that overlap in time, an estimate of the polarization parameters requires analysis of the time-frequency dependence of these attributes. We propose a method to map instantaneous polarization attributes of seismic signals in the wavelet domain and explicitly relate these attributes with the wavelet-transform coefficients of the analyzed signal. We compare our method with traditional complex-trace analysis using numerical examples. An advantage of our method is its possibility of performing the complete wave-mode separation/ filtering process in the wavelet domain and its ability to provide the frequency dependence of ellipticity, which contains important information on the subsurface structure. Furthermore, using 2-C synthetic and real seismic shot gathers, we show how to use the method to separate different wave types and identify zones of interfering wave modes Y1 - 2006 UR - http://geophysics.geoscienceworld.org/ U6 - https://doi.org/10.1190/1.2194511 SN - 0016-8033 ER - TY - GEN A1 - Hiemer, Stefan A1 - Rößler, Dirk A1 - Scherbaum, Frank T1 - Catalog of Swarm Earthquakes in Vogtland /West Bohemia in 2008/09 N2 - The document contains the catalog of earthquakes in Vogtland /West Bohemia within the period of 2008/10/19 -to- 2009/03/16. The events were recorded by a seismic mini-array operated by the Institute of Earthsciences, University of Postdam. N2 - Das Dokument enthält einen Katalog von Erdbeben im Vogtland/Westböhmen im Zeitraum 2008/10/19 -bis- 2009/03/16. Die Erdbeben wurden mit Hilfe eines seismologischen Miniarrays, welches vom Institut für Geowissenschaften, Universität Potsdam, aufgestellt wurde, registriert. KW - Vogtland/Westböhmen KW - Erdbebenschwarm 2008/09 KW - Arrayseismologie KW - Erdbebenkatalog KW - Vogtland/West Bohemia KW - earthquake swarm 2008/09 KW - array seismology KW - earthquake catalog Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-51710 ER - TY - GEN A1 - Hiemer, Stefan A1 - Rößler, Dirk A1 - Scherbaum, Frank T1 - Catalog of Swarm Earthquakes in Vogtland /West Bohemia in 2008/09 N2 - The document contains the catalog of earthquakes in Vogtland /West Bohemia within the period of 2008/10/19 -to- 2009/03/16. The events were recorded by a seismic mini-array operated by the Institute of Earthsciences, University of Postdam. N2 - Das Dokument enthält einen Katalog von Erdbeben im Vogtland/Westböhmen im Zeitraum 2008/10/19 -bis- 2009/03/16. Die Erdbeben wurden mit Hilfe eines seismologischen Miniarrays, welches vom Institut für Geowissenschaften, Universität Potsdam, aufgestellt wurde, registriert. KW - Vogtland/Westböhmen KW - Erdbebenschwarm 2008/09 KW - Arrayseismologie KW - Erdbebenkatalog KW - Vogtland/West Bohemia KW - earthquake swarm 2008/09 KW - array seismology KW - earthquake catalog Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53837 ER - TY - JOUR A1 - Vogel, Kristin A1 - Riggelsen, Carsten A1 - Korup, Oliver A1 - Scherbaum, Frank T1 - Bayesian network learning for natural hazard analyses JF - Natural hazards and earth system sciences N2 - Modern natural hazards research requires dealing with several uncertainties that arise from limited process knowledge, measurement errors, censored and incomplete observations, and the intrinsic randomness of the governing processes. Nevertheless, deterministic analyses are still widely used in quantitative hazard assessments despite the pitfall of misestimating the hazard and any ensuing risks. In this paper we show that Bayesian networks offer a flexible framework for capturing and expressing a broad range of uncertainties encountered in natural hazard assessments. Although Bayesian networks are well studied in theory, their application to real-world data is far from straightforward, and requires specific tailoring and adaptation of existing algorithms. We offer suggestions as how to tackle frequently arising problems in this context and mainly concentrate on the handling of continuous variables, incomplete data sets, and the interaction of both. By way of three case studies from earthquake, flood, and landslide research, we demonstrate the method of data-driven Bayesian network learning, and showcase the flexibility, applicability, and benefits of this approach. Our results offer fresh and partly counterintuitive insights into well-studied multivariate problems of earthquake-induced ground motion prediction, accurate flood damage quantification, and spatially explicit landslide prediction at the regional scale. In particular, we highlight how Bayesian networks help to express information flow and independence assumptions between candidate predictors. Such knowledge is pivotal in providing scientists and decision makers with well-informed strategies for selecting adequate predictor variables for quantitative natural hazard assessments. Y1 - 2014 U6 - https://doi.org/10.5194/nhess-14-2605-2014 SN - 1561-8633 VL - 14 IS - 9 SP - 2605 EP - 2626 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Schmelzbach, C. A1 - Scherbaum, Frank A1 - Tronicke, Jens A1 - Dietrich, P. T1 - Bayesian frequency-domain blind deconvolution of ground-penetrating radar data JF - Journal of applied geophysics N2 - Enhancing the resolution and accuracy of surface ground-penetrating radar (GPR) reflection data by inverse filtering to recover a zero-phased band-limited reflectivity image requires a deconvolution technique that takes the mixed-phase character of the embedded wavelet into account. In contrast, standard stochastic deconvolution techniques assume that the wavelet is minimum phase and, hence, often meet with limited success when applied to GPR data. We present a new general-purpose blind deconvolution algorithm for mixed-phase wavelet estimation and deconvolution that (1) uses the parametrization of a mixed-phase wavelet as the convolution of the wavelet's minimum-phase equivalent with a dispersive all-pass filter, (2) includes prior information about the wavelet to be estimated in a Bayesian framework, and (3) relies on the assumption of a sparse reflectivity. Solving the normal equations using the data autocorrelation function provides an inverse filter that optimally removes the minimum-phase equivalent of the wavelet from the data, which leaves traces with a balanced amplitude spectrum but distorted phase. To compensate for the remaining phase errors, we invert in the frequency domain for an all-pass filter thereby taking advantage of the fact that the action of the all-pass filter is exclusively contained in its phase spectrum. A key element of our algorithm and a novelty in blind deconvolution is the inclusion of prior information that allows resolving ambiguities in polarity and timing that cannot be resolved using the sparseness measure alone. We employ a global inversion approach for non-linear optimization to find the all-pass filter phase values for each signal frequency. We tested the robustness and reliability of our algorithm on synthetic data with different wavelets, 1-D reflectivity models of different complexity, varying levels of added noise, and different types of prior information. When applied to realistic synthetic 2-D data and 2-D field data, we obtain images with increased temporal resolution compared to the results of standard processing. KW - Deconvolution KW - Inverse filtering KW - Ground penetrating radar KW - GPR KW - Data processing KW - Vertical resolution Y1 - 2011 U6 - https://doi.org/10.1016/j.jappgeo.2011.08.010 SN - 0926-9851 VL - 75 IS - 4 SP - 615 EP - 630 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ewald, Michael A1 - Igel, Heiner A1 - Hinzen, Klaus-Günther A1 - Scherbaum, Frank T1 - Basin-related effects on ground motion for earthquake scenarios in the Lower Rhine Embayment N2 - The deterministic calculation of earthquake scenarios using complete waveform modelling plays an increasingly important role in estimating shaking hazard in seismically active regions. Here we apply 3-D numerical modelling of seismic wave propagation to M 6+ earthquake scenarios in the area of the Lower Rhine Embayment, one of the seismically most active regions in central Europe. Using a 3-D basin model derived from geology, borehole information and seismic experiments, we aim at demonstrating the strong dependence of ground shaking on hypocentre location and basin structure. The simulations are carried out up to frequencies of ca. 1 Hz. As expected, the basin structure leads to strong lateral variations in peak ground motion, amplification and shaking duration. Depending on source-basin-receiver geometry, the effects correlate with basin depth and the slope of the basin flanks; yet, the basin also affects peak ground motion and estimated shaking hazard thereof outside the basin. Comparison with measured seismograms for one of the earthquakes shows that some of the main characteristics of the wave motion are reproduced. Cumulating the derived seismic intensities from the three modelled earthquake scenarios leads to a predominantly basin correlated intensity distribution for our study area Y1 - 2006 UR - http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-246X U6 - https://doi.org/10.1111/j.1365-246X.2006.02909.x SN - 0956-540X ER - TY - JOUR A1 - Rodriguez-Marek, A. A1 - Rathje, E. M. A1 - Bommer, Julian J. A1 - Scherbaum, Frank A1 - Stafford, P. J. T1 - Application of single-station sigma and site-response characterization in a probabilistic Seismic-Hazard analysis for new uclear site JF - Bulletin of the Seismological Society of America N2 - Aleatory variability in ground-motion prediction, represented by the standard deviation (sigma) of a ground-motion prediction equation, exerts a very strong influence on the results of probabilistic seismic-hazard analysis (PSHA). This is especially so at the low annual exceedance frequencies considered for nuclear facilities; in these cases, even small reductions in sigma can have a marked effect on the hazard estimates. Proper separation and quantification of aleatory variability and epistemic uncertainty can lead to defensible reductions in sigma. One such approach is the single-station sigma concept, which removes that part of sigma corresponding to repeatable site-specific effects. However, the site-to-site component must then be constrained by site-specific measurements or else modeled as epistemic uncertainty and incorporated into the modeling of site effects. The practical application of the single-station sigma concept, including the characterization of the dynamic properties of the site and the incorporation of site-response effects into the hazard calculations, is illustrated for a PSHA conducted at a rock site under consideration for the potential construction of a nuclear power plant. Y1 - 2014 U6 - https://doi.org/10.1785/0120130196 SN - 0037-1106 SN - 1943-3573 VL - 104 IS - 4 SP - 1601 EP - 1619 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Runge, Antonia K. A1 - Scherbaum, Frank A1 - Curtis, Andrew A1 - Riggelsen, Carsten T1 - An interactive tool for the elicitation of subjective probabilities in probabilistic seismic-hazard analysis JF - Bulletin of the Seismological Society of America N2 - In probabilistic seismic-hazard analysis, epistemic uncertainties are commonly treated within a logic-tree framework in which the branch weights express the degree of belief of an expert in a set of models. For the calculation of the distribution of hazard curves, these branch weights represent subjective probabilities. A major challenge for experts is to provide logically consistent weight estimates (in the sense of Kolmogorovs axioms), to be aware of the multitude of heuristics, and to minimize the biases which affect human judgment under uncertainty. We introduce a platform-independent, interactive program enabling us to quantify, elicit, and transfer expert knowledge into a set of subjective probabilities by applying experimental design theory, following the approach of Curtis and Wood (2004). Instead of determining the set of probabilities for all models in a single step, the computer-driven elicitation process is performed as a sequence of evaluations of relative weights for small subsets of models. From these, the probabilities for the whole model set are determined as a solution of an optimization problem. The result of this process is a set of logically consistent probabilities together with a measure of confidence determined from the amount of conflicting information which is provided by the expert during the relative weighting process. We experiment with different scenarios simulating likely expert behaviors in the context of knowledge elicitation and show the impact this has on the results. The overall aim is to provide a smart elicitation technique, and our findings serve as a guide for practical applications. Y1 - 2013 U6 - https://doi.org/10.1785/0120130026 SN - 0037-1106 SN - 1943-3573 VL - 103 IS - 5 SP - 2862 EP - 2874 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Kohler, A. A1 - Ohrnberger, Matthias A1 - Scherbaum, Frank A1 - Stange, S. A1 - Kind, F. T1 - Ambient vibration measurements in the Southern Rhine Graben close to Basle N2 - This study presents results of ambient noise measurements from temporary single station and small-scale array deployments in the northeast of Basle. H/V spectral ratios were determined along various profiles crossing the eastern masterfault of the Rhine Rift Valley and the adjacent sedimentary rift fills. The fundamental H/V peak frequencies are decreasing along the profile towards the eastern direction being consistent with the dip of the tertiary sediments within the rift. Using existing empirical relationships between H/V frequency peaks and the depth of the dominant seismic contrast, derived on basis of the lambda/4-resonance hypothesis and a power law depth dependence of the S-wave velocity, we obtain thicknesses of the rift fill from about 155 m in the west to 280 in in the east. This is in agreement with previous studies. The array analysis of the ambient noise wavefield yielded a stable dispersion relation consistent with Rayleigh wave propagation velocities. We conclude that a significant amount of surface waves is contained in the observed wavefield. The computed ellipticity for fundamental mode Rayleigh waves for the velocity depth models used for the estimation of the sediment thicknesses is in agreement with the observed H/V spectra over a large frequency band Y1 - 2004 SN - 1593-5213 ER - TY - JOUR A1 - Thomas, Ch. A1 - Igel, Heiner A1 - Weber, Michael H. A1 - Scherbaum, Frank T1 - Acoustic simulation of P-wave propagation in a heterogeneous spherical earth : numerical method and application to precursor waves to PKPdf Y1 - 2000 ER - TY - JOUR A1 - Molkenthin, Christian A1 - Scherbaum, Frank A1 - Griewank, Andreas A1 - Kuehn, Nicolas A1 - Stafford, Peter T1 - A Study of the sensitivity of response spectral amplitudes on seismological parameters using algorithmic differentiation JF - Bulletin of the Seismological Society of America N2 - Response spectra are of fundamental importance in earthquake engineering and represent a standard measure in seismic design for the assessment of structural performance. However, unlike Fourier spectral amplitudes, the relationship of response spectral amplitudes to seismological source, path, and site characteristics is not immediately obvious and might even be considered counterintuitive for high oscillator frequencies. The understanding of this relationship is nevertheless important for seismic-hazard analysis. The purpose of the present study is to comprehensively characterize the variation of response spectral amplitudes due to perturbations of the causative seismological parameters. This is done by calculating the absolute parameter sensitivities (sensitivity coefficients) defined as the partial derivatives of the model output with respect to its input parameters. To derive sensitivities, we apply algorithmic differentiation (AD). This powerful approach is extensively used for sensitivity analysis of complex models in meteorology or aerodynamics. To the best of our knowledge, AD has not been explored yet in the seismic-hazard context. Within the present study, AD was successfully implemented for a proven and extensively applied simulation program for response spectra (Stochastic Method SIMulation [SMSIM]) using the TAPENADE AD tool. We assess the effects and importance of input parameter perturbations on the shape of response spectra for different regional stochastic models in a quantitative way. Additionally, we perform sensitivity analysis regarding adjustment issues of groundmotion prediction equations. Y1 - 2014 U6 - https://doi.org/10.1785/0120140022 SN - 0037-1106 SN - 1943-3573 VL - 104 IS - 5 SP - 2240 EP - 2252 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Bommer, Julian J. A1 - Coppersmith, Kevin J. A1 - Coppersmith, Ryan T. A1 - Hanson, Kathryn L. A1 - Mangongolo, Azangi A1 - Neveling, Johann A1 - Rathje, Ellen M. A1 - Rodriguez-Marek, Adrian A1 - Scherbaum, Frank A1 - Shelembe, Refilwe A1 - Stafford, Peter J. A1 - Strasser, Fleur O. T1 - A SSHAC Level 3 Probabilistic Seismic Hazard Analysis for a New-Build Nuclear Site in South Africa JF - Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute N2 - A probabilistic seismic hazard analysis has been conducted for a potential nuclear power plant site on the coast of South Africa, a country of low-to-moderate seismicity. The hazard study was conducted as a SSHAC Level 3 process, the first application of this approach outside North America. Extensive geological investigations identified five fault sources with a non-zero probability of being seismogenic. Five area sources were defined for distributed seismicity, the least active being the host zone for which the low recurrence rates for earthquakes were substantiated through investigations of historical seismicity. Empirical ground-motion prediction equations were adjusted to a horizon within the bedrock at the site using kappa values inferred from weak-motion analyses. These adjusted models were then scaled to create new equations capturing the range of epistemic uncertainty in this region with no strong motion recordings. Surface motions were obtained by convolving the bedrock motions with site amplification functions calculated using measured shear-wave velocity profiles. Y1 - 2015 U6 - https://doi.org/10.1193/060913EQS145M SN - 8755-2930 SN - 1944-8201 VL - 31 IS - 2 SP - 661 EP - 698 PB - Earthquake Engineering Research Institute CY - Oakland ER - TY - JOUR A1 - Kuehn, Nicolas M. A1 - Scherbaum, Frank T1 - A partially non-ergodic ground-motion prediction equation for Europe and the Middle East JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - A partially non-ergodic ground-motion prediction equation is estimated for Europe and the Middle East. Therefore, a hierarchical model is presented that accounts for regional differences. For this purpose, the scaling of ground-motion intensity measures is assumed to be similar, but not identical in different regions. This is achieved by assuming a hierarchical model, where some coefficients are treated as random variables which are sampled from an underlying global distribution. The coefficients are estimated by Bayesian inference. This allows one to estimate the epistemic uncertainty in the coefficients, and consequently in model predictions, in a rigorous way. The model is estimated based on peak ground acceleration data from nine different European/Middle Eastern regions. There are large differences in the amount of earthquakes and records in the different regions. However, due to the hierarchical nature of the model, regions with only few data points borrow strength from other regions with more data. This makes it possible to estimate a separate set of coefficients for all regions. Different regionalized models are compared, for which different coefficients are assumed to be regionally dependent. Results show that regionalizing the coefficients for magnitude and distance scaling leads to better performance of the models. The models for all regions are physically sound, even if only very few earthquakes comprise one region. KW - Ground-motion prediction equation KW - Non-ergodic PSHA KW - Hierarchical model Y1 - 2016 U6 - https://doi.org/10.1007/s10518-016-9911-x SN - 1570-761X SN - 1573-1456 VL - 14 SP - 2629 EP - 2642 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Kummerow, J. A1 - Kind, Rainer A1 - Oncken, Onno A1 - Giese, Peter A1 - Ryberg, Trond A1 - Wylegalla, Kurt A1 - Scherbaum, Frank T1 - A natural and controlled source seismic profile through the Eastern Alps : TRANSALP N2 - The combined passive and active seismic TRANSALP experiment produced an unprecedented high-resolution crustal image of the Eastern Alps between Munich and Venice. The European and Adriatic Mohos (EM and AM, respectively) are clearly imaged with different seismic techniques: near-vertical incidence reflections and receiver functions (RFs). The European Moho dips gently southward from 35 km beneath the northern foreland to a maximum depth of 55 km beneath the central part of the Eastern Alps, whereas the Adriatic Moho is imaged primarily by receiver functions at a relatively constant depth of about 40 km. In both data sets, we have also detected first-order Alpine shear zones, such as the Helvetic detachment, Inntal fault and SubTauern ramp in the north. Apart from the Valsugana thrust, receiver functions in the southern part of the Eastern Alps have also observed a north dipping interface, which may penetrate the entire Adriatic crust [Adriatic Crust Interface (ACI)]. Deep crustal seismicity may be related to the ACI. We interpret the ACI as the currently active retroshear zone in the doubly vergent Alpine collisional belt. (C) 2004 Elsevier B.V. All rights reserved Y1 - 2004 ER -