TY - JOUR A1 - Gimenez-Garcia, Ana A1 - Shenar, Tomer A1 - Torrejon, J. M. A1 - Oskinova, Lida A1 - Martinez-Nunez, S. A1 - Hamann, Wolf-Rainer A1 - Rodes-Roca, J. J. A1 - González-Galan, A. A1 - Alonso-Santiago, J. A1 - González-Fernández, C. A1 - Bernabeu, Guillermo A1 - Sander, Andreas Alexander Christoph T1 - Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in supergiant fast X-ray transient and classical supergiant X-ray binaries JF - Siberian Mathematical Journal N2 - Aims. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J175442619 (SFXT) and Vela X-1 (SGXB). We analyze the spectra of each star in detail and derive their stellar and wind properties. As a next step, we compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. Methods. We use archival infrared, optical and ultraviolet observations, and analyze them with the non-local thermodynamic equilibrium (NLTE) Potsdam Wolf-Rayet model atmosphere code. We derive the physical properties of the stars and their stellar winds, accounting for the influence of X-rays on the stellar winds. Results. We find that the stellar parameters derived from the analysis generally agree well with the spectral types of the two donors: O9I (IGR J17544-2619) and B0.5Iae (Vela X-1). The distance to the sources have been revised and also agree well with the estimations already available in the literature. In IGR J17544-2619 we are able to narrow the uncertainty to d = 3.0 +/- 0.2 kpc. From the stellar radius of the donor and its X-ray behavior, the eccentricity of IGR J17544-2619 is constrained to e < 0.25. The derived chemical abundances point to certain mixing during the lifetime of the donors. An important difference between the stellar winds of the two stars is their terminal velocities (v(infinity) = 1500 km s(-1) in IGR J17544-2619 and v(infinity) = 700 km s(-1) in Vela X-1), which have important consequences on the X-ray luminosity of these sources. Conclusions. The donors of IGR J17544-2619 and Vela X-1 have similar spectral types as well as similar parameters that physically characterize them and their spectra. In addition, the orbital parameters of the systems are similar too, with a nearly circular orbit and short orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion to propeller regimes when combined with other parameters. KW - accretion, accretion disks KW - methods: observational KW - techniques: spectroscopic KW - stars: atmospheres KW - X-rays: binaries KW - stars: winds, outflows Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527551 SN - 1432-0746 VL - 591 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Aldoretta, E. J. A1 - St-Louis, N. A1 - Richardson, N. D. A1 - Moffat, Anthony F. J. A1 - Eversberg, T. A1 - Hill, G. M. A1 - Shenar, Tomer A1 - Artigau, E. A1 - Gauza, B. A1 - Knapen, J. H. A1 - Kubat, Jiří A1 - Kubatova, Brankica A1 - Maltais-Tariant, R. A1 - Munoz, M. A1 - Pablo, H. A1 - Ramiaramanantsoa, T. A1 - Richard-Laferriere, A. A1 - Sablowski, D. P. A1 - Simon-Diaz, S. A1 - St-Jean, L. A1 - Bolduan, F. A1 - Dias, F. M. A1 - Dubreuil, P. A1 - Fuchs, D. A1 - Garrel, T. A1 - Grutzeck, G. A1 - Hunger, T. A1 - Kuesters, D. A1 - Langenbrink, M. A1 - Leadbeater, R. A1 - Li, D. A1 - Lopez, A. A1 - Mauclaire, B. A1 - Moldenhawer, T. A1 - Potter, M. A1 - dos Santos, E. M. A1 - Schanne, L. A1 - Schmidt, J. A1 - Sieske, H. A1 - Strachan, J. A1 - Stinner, E. A1 - Stinner, P. A1 - Stober, B. A1 - Strandbaek, K. A1 - Syder, T. A1 - Verilhac, D. A1 - Waldschlaeger, U. A1 - Weiss, D. A1 - Wendt, A. T1 - An extensive spectroscopic time series of three Wolf-Rayet stars - I. The lifetime of large-scale structures in the wind of WR 134 JF - Monthly notices of the Royal Astronomical Society N2 - During the summer of 2013, a 4-month spectroscopic campaign took place to observe the variabilities in three Wolf-Rayet stars. The spectroscopic data have been analysed for WR 134 (WN6b), to better understand its behaviour and long-term periodicity, which we interpret as arising from corotating interaction regions (CIRs) in the wind. By analysing the variability of the He ii lambda 5411 emission line, the previously identified period was refined to P = 2.255 +/- 0.008 (s.d.) d. The coherency time of the variability, which we associate with the lifetime of the CIRs in the wind, was deduced to be 40 +/- 6 d, or similar to 18 cycles, by cross-correlating the variability patterns as a function of time. When comparing the phased observational grey-scale difference images with theoretical grey-scales previously calculated from models including CIRs in an optically thin stellar wind, we find that two CIRs were likely present. A separation in longitude of Delta I center dot a parts per thousand integral 90A degrees was determined between the two CIRs and we suggest that the different maximum velocities that they reach indicate that they emerge from different latitudes. We have also been able to detect observational signatures of the CIRs in other spectral lines (C iv lambda lambda 5802,5812 and He i lambda 5876). Furthermore, a DAC was found to be present simultaneously with the CIR signatures detected in the He i lambda 5876 emission line which is consistent with the proposed geometry of the large-scale structures in the wind. Small-scale structures also show a presence in the wind, simultaneously with the larger scale structures, showing that they do in fact co-exist. KW - instabilities KW - methods: data analysis KW - techniques: spectroscopic KW - stars: individual: WR 134 KW - stars: massive KW - stars: Wolf-Rayet Y1 - 2016 U6 - https://doi.org/10.1093/mnras/stw1188 SN - 0035-8711 SN - 1365-2966 VL - 460 SP - 3407 EP - 3417 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Denker, Carsten A1 - Heibel, C. A1 - Rendtel, J. A1 - Arlt, K. A1 - Balthasar, H. A1 - Diercke, Andrea A1 - Gonzalez Manrique, Sergio Javier A1 - Hofmann, A. A1 - Kuckein, Christoph A1 - Önel, H. A1 - Valliappan, Senthamizh Pavai A1 - Staude, J. A1 - Verma, Meetu T1 - Solar physics at the Einstein Tower JF - Astronomische Nachrichten = Astronomical notes KW - history and philosophy of astronomy KW - Sun: photosphere KW - Sun: magnetic fields KW - techniques: spectroscopic KW - telescopes Y1 - 2016 U6 - https://doi.org/10.1002/asna.201612442 SN - 0004-6337 SN - 1521-3994 VL - 337 SP - 1105 EP - 1113 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Verma, Meetu A1 - Denker, Carsten A1 - Böhm, F. A1 - Balthasar, H. A1 - Fischer, C. E. A1 - Kuckein, Christoph A1 - Gonzalez, N. Bello A1 - Berkefeld, T. A1 - Collados Vera, M. A1 - Diercke, Andrea A1 - Feller, A. A1 - Gonzalez Manrique, Sergio Javier A1 - Hofmann, A. A1 - Lagg, A. A1 - Nicklas, H. A1 - Orozco Suarez, D. A1 - Pator Yabar, A. A1 - Rezaei, R. A1 - Schlichenmaier, R. A1 - Schmidt, D. A1 - Schmidt, W. A1 - Sigwarth, M. A1 - Sobotka, M. A1 - Solanki, S. K. A1 - Soltau, D. A1 - Staude, J. A1 - Strassmeier, Klaus G. A1 - Volkmer, R. A1 - von der Lühe, O. A1 - Waldmann, T. T1 - Flow and magnetic field properties in the trailing sunspots of active region NOAA 12396 JF - Astronomische Nachrichten = Astronomical notes N2 - Improved measurements of the photospheric and chromospheric three-dimensional magnetic and flow fields are crucial for a precise determination of the origin and evolution of active regions. We present an illustrative sample of multi-instrument data acquired during a two-week coordinated observing campaign in August 2015 involving, among others, the GREGOR solar telescope (imaging and near-infrared spectroscopy) and the space missions Solar Dynamics Observatory (SDO) and Interface Region Imaging Spectrograph (IRIS). The observations focused on the trailing part of active region NOAA 12396 with complex polarity inversion lines and strong intrusions of opposite polarity flux. The GREGOR Infrared Spectrograph (GRIS) provided Stokes IQUV spectral profiles in the photospheric Si i.1082.7 nm line, the chromospheric He I lambda 1083.0 nm triplet, and the photospheric Ca I lambda 1083.9 nm line. Carefully calibrated GRIS scans of the active region provided maps of Doppler velocity and magnetic field at different atmospheric heights. We compare quick-look maps with those obtained with the " Stokes Inversions based on Response functions" (SIR) code, which furnishes deeper insight into the magnetic properties of the region. We find supporting evidence that newly emerging flux and intruding opposite polarity flux are hampering the formation of penumbrae, i.e., a penumbra fully surrounding a sunspot is only expected after cessation of flux emergence in proximity to the sunspots. (C) 2016 WILEY-VCH Verlag GmbH& Co.KGaA, Weinheim KW - Sun: magnetic fields KW - sunspots KW - methods: data analysis KW - techniques: polarimetric KW - techniques: spectroscopic Y1 - 2016 U6 - https://doi.org/10.1002/asna.201612447 SN - 0004-6337 SN - 1521-3994 VL - 337 SP - 1090 EP - 1098 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Gonzalez Manrique, Sergio Javier A1 - Kuckein, Christoph A1 - Pastor Yabar, A. A1 - Collados Vera, M. A1 - Denker, Carsten A1 - Fischer, C. E. A1 - Gömöry, P. A1 - Diercke, Andrea A1 - Gonzalez, N. Bello A1 - Schlichenmaier, R. A1 - Balthasar, H. A1 - Berkefeld, T. A1 - Feller, A. A1 - Hoch, S. A1 - Hofmann, A. A1 - Kneer, F. A1 - Lagg, A. A1 - Nicklas, H. A1 - Orozco Suarez, D. A1 - Schmidt, D. A1 - Schmidt, W. A1 - Sigwarth, M. A1 - Sobotka, M. A1 - Solanki, S. K. A1 - Soltau, D. A1 - Staude, J. A1 - Strassmeier, Klaus G. A1 - Verma, Meetu A1 - Volkmer, R. A1 - von der Lühe, O. A1 - Waldmann, T. T1 - Fitting peculiar spectral profiles in He I 10830 angstrom absorption features JF - Astronomische Nachrichten = Astronomical notes N2 - The new generation of solar instruments provides better spectral, spatial, and temporal resolution for a better understanding of the physical processes that take place on the Sun. Multiple-component profiles are more commonly observed with these instruments. Particularly, the He i 10830 triplet presents such peculiar spectral profiles, which give information on the velocity and magnetic fine structure of the upper chromosphere. The purpose of this investigation is to describe a technique to efficiently fit the two blended components of the He i 10830 triplet, which are commonly observed when two atmospheric components are located within the same resolution element. The observations used in this study were taken on 2015 April 17 with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) attached to the 1.5-m GREGOR solar telescope, located at the Observatorio del Teide, Tenerife, Spain. We apply a double-Lorentzian fitting technique using Levenberg-Marquardt least-squares minimization. This technique is very simple and much faster than inversion codes. Line-of-sight Doppler velocities can be inferred for a whole map of pixels within just a few minutes. Our results show sub-and supersonic downflow velocities of up to 32 km s(-1) for the fast component in the vicinity of footpoints of filamentary structures. The slow component presents velocities close to rest. (C) 2016 WILEY-VCH Verlag GmbH& Co. KGaA, Weinheim KW - Sun: chromosphere KW - methods: data analysis KW - techniques: spectroscopic KW - line: profiles Y1 - 2016 U6 - https://doi.org/10.1002/asna.201512433 SN - 0004-6337 SN - 1521-3994 VL - 337 SP - 1057 EP - 1063 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Balthasar, H. A1 - Gömöry, P. A1 - González Manrique, Sergio Javier A1 - Kuckein, Christoph A1 - Kavka, J. A1 - Kucera, A. A1 - Schwartz, P. A1 - Vaskova, R. A1 - Berkefeld, T. A1 - Collados Vera, M. A1 - Denker, Carsten A1 - Feller, A. A1 - Hofmann, A. A1 - Lagg, A. A1 - Nicklas, H. A1 - Suarez, D. A1 - Pastor Yabar, A. A1 - Rezaei, R. A1 - Schlichenmaier, R. A1 - Schmidt, D. A1 - Schmidt, W. A1 - Sigwarth, M. A1 - Sobotka, M. A1 - Solanki, S. K. A1 - Soltau, D. A1 - Staude, J. A1 - Strassmeier, Klaus G. A1 - Volkmer, R. A1 - von der Lühe, O. A1 - Waldmann, T. T1 - Spectropolarimetric observations of an arch filament system with the GREGOR solar telescope JF - Astronomische Nachrichten = Astronomical notes N2 - Arch filament systems occur in active sunspot groups, where a fibril structure connects areas of opposite magnetic polarity, in contrast to active region filaments that follow the polarity inversion line. We used the GREGOR Infrared Spectrograph (GRIS) to obtain the full Stokes vector in the spectral lines SiI lambda 1082.7 nm, He I lambda 1083.0 nm, and Ca I lambda 1083.9 nm. We focus on the near-infrared calcium line to investigate the photospheric magnetic field and velocities, and use the line core intensities and velocities of the helium line to study the chromospheric plasma. The individual fibrils of the arch filament system connect the sunspot with patches of magnetic polarity opposite to that of the spot. These patches do not necessarily coincide with pores, where the magnetic field is strongest. Instead, areas are preferred not far from the polarity inversion line. These areas exhibit photospheric downflows of moderate velocity, but significantly higher downflows of up to 30 km s(-1) in the chromospheric helium line. Our findings can be explained with new emerging flux where the matter flows downward along the field lines of rising flux tubes, in agreement with earlier results. (C) 2016 WILEY-VCH Verlag GmbH& Co. KGaA, Weinheim KW - Sun: filaments KW - Sun: photosphere KW - techniques: polarimetric KW - techniques: spectroscopic Y1 - 2016 U6 - https://doi.org/10.1002/asna.201612432 SN - 0004-6337 SN - 1521-3994 VL - 337 SP - 1050 EP - 1056 PB - Wiley-VCH CY - Weinheim ER -