TY - JOUR A1 - Pilz, Marco A1 - Parolai, Stefano A1 - Picozzi, Matteo A1 - Zschau, Jochen T1 - Evaluation of proxies for seismic site conditions in large urban areas the example of Santiago de Chile JF - Physics and chemistry of the earth N2 - Characterizing the local site response in large cities is an important step towards seismic hazard assessment. To this regard, single station seismic noise measurements were carried out at 146 sites in the northern part of Santiago de Chile. This extensive survey allowed the fundamental resonance frequency of the sedimentary cover, derived from horizontal-to-vertical (H/V) spectral ratios, to be mapped. By inverting the spectral ratios under the constraint of the thickness of the sedimentary cover, known from previous gravimetric measurements, local S-wave velocity profiles have been retrieved. After interpolation between the individual profiles, the resulting high resolution 3D S-wave velocity model allows the entire area, as well as deeper parts of the basin, to be represented in great detail. Since one lithology shows a great scatter in the velocity values only a very general correlation between S-wave velocity in the uppermost 30 m (v(s)(30)) and local geology is found. Local S-wave velocity profiles can serve as a key factor in seismic hazard assessment, since they allow an estimate of the amplification potential of the sedimentary cover. Mapping the intensity distribution of the 27 February 2010 Maule, Chile, event (Mw = 8.8) the results indicate that local amplification of the ground motion might partially explain the damage distribution and encourage the use of the low cost seismic noise techniques for the study of seismic site effects. KW - Ambient seismic noise KW - H/V ratio KW - Inversion KW - S-wave velocity KW - Site effects Y1 - 2011 U6 - https://doi.org/10.1016/j.pce.2011.01.007 SN - 1474-7065 VL - 36 IS - 16 SP - 1259 EP - 1266 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Pilz, Marco A1 - Parolai, Stefano A1 - Stupazzini, Marco A1 - Paolucci, Roberto A1 - Zschau, Jochen T1 - Modelling basin effects on earthquake ground motion in the Santiago de Chile basin by a spectral element code JF - Geophysical journal international N2 - Simulations of strong ground motion within the Santiago de Chile Metropolitan area were carried out by means of 3-D deterministic wave propagation tool based on the spectral element method. The simulated events take into account the pronounced interface between the low-velocity sedimentary basin and the bedrock as well as topography of the area. To verify our model we simulated a regional earthquake recorded by a dense network installed in the city of Santiago for recording aftershock activity after the 2010 February 27 Maule main shock. The results proof the alluvial basin amplification effects and show a strong dependence of spectral amplification in the basin on the local site conditions. Moreover, we studied the seismic response due to a hypothetical M(w) = 6.0 event occurring along the active San Ramon Fault, which is crossing the eastern edge of the city. The scenario earthquakes exhibit that an unfavourable interaction between fault rupture, radiation mechanism and complex geological and topographic conditions in the near-field region may give rise to large values of peak ground velocity in the basin. Finally, 3-D numerical predictions of ground motion are compared with the one computed according to ground motion prediction equations selected among the next generation attenuation relationships, in terms of ground motion peak values and spectral acceleration. The comparison underlines that the 3-D scenario simulations predict a significantly higher level of ground motion in the Santiago basin, especially over deep alluvial deposits. Moreover, also the location of the rupture nucleation largely influences the observed shaking pattern. KW - Earthquake ground motions KW - Site effects KW - Wave propagation KW - South America Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-246X.2011.05183.x SN - 0956-540X VL - 187 IS - 2 SP - 929 EP - 945 PB - Wiley-Blackwell CY - Malden ER -