TY - JOUR A1 - Hubrig, Swetlana A1 - Scholz, Kathleen A1 - Hamann, Wolf-Rainer A1 - Schoeller, M. A1 - Ignace, R. A1 - Ilyin, Ilya A1 - Gayley, K. G. A1 - Oskinova, Lida T1 - Searching for a magnetic field in Wolf-Rayet stars using FORS 2 spectropolarimetry JF - Monthly notices of the Royal Astronomical Society N2 - To investigate if magnetic fields are present in Wolf-Rayet stars, we selected a few stars in the Galaxy and one in the Large Magellanic Cloud (LMC). We acquired low-resolution spectropolarimetric observations with the European Southern Observatory FORS 2 (FOcal Reducer low dispersion Spectrograph) instrument during two different observing runs. During the first run in visitor mode, we observed the LMC Wolf-Rayet star BAT99 7 and the stars WR 6, WR 7, WR 18, and WR 23 in our Galaxy. The second run in service mode was focused on monitoring the star WR 6. Linear polarization was recorded immediately after the observations of circular polarization. During our visitor observing run, the magnetic field for the cyclically variable star WR 6 was measured at a significance level of 3.3 sigma (< B-z > = 258 +/- 78 G). Among the other targets, the highest value for the longitudinal magnetic field, < B-z > = 327 +/- 141 G, was measured in the LMC star BAT99 7. Spectropolarimetric monitoring of the star WR 6 revealed a sinusoidal nature of the < B-z > variations with the known rotation period of 3.77 d, significantly adding to the confidence in the detection. The presence of the rotation-modulated magnetic variability is also indicated in our frequency periodogram. The reported field magnitude suffers from significant systematic uncertainties at the factor of 2 level, in addition to the quoted statistical uncertainties, owing to the theoretical approach used to characterize it. Linear polarization measurements showed no line effect in the stars, apart from WR 6. BAT99 7, WR 7, and WR 23 do not show variability of the linear polarization over two nights. KW - techniques: polarimetric KW - stars: individual: WR 6 KW - stars: magnetic field KW - stars: variables: general KW - stars: Wolf-Rayet Y1 - 2016 U6 - https://doi.org/10.1093/mnras/stw558 SN - 0035-8711 SN - 1365-2966 VL - 458 SP - 3381 EP - 3393 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Steffen, M. A1 - Hubrig, Swetlana A1 - Todt, Helge Tobias A1 - Schoeller, M. A1 - Hamann, Wolf-Rainer A1 - Sandin, Christer A1 - Schönberner, Detlef T1 - Weak magnetic fields in central stars of planetary nebulae? JF - Astronomy and astrophysics : an international weekly journal N2 - Context. It is not yet clear whether magnetic fields play an essential role in shaping planetary nebulae (PNe), or whether stellar rotation alone and/or a close binary companion, stellar or substellar, can account for the variety of the observed nebular morphologies. Aims. In a quest for empirical evidence verifying or disproving the role of magnetic fields in shaping planetary nebulae, we follow up on previous attempts to measure the magnetic field in a representative sample of PN central stars. Methods. We obtained low-resolution polarimetric spectra with FORS2 installed on the Antu telescope of the VLT for a sample of 12 bright central stars of PNe with different morphologies, including two round nebulae, seven elliptical nebulae, and three bipolar nebulae. Two targets are Wolf-Rayet type central stars. Results. For the majority of the observed central stars, we do not find any significant evidence for the existence of surface magnetic fields. However, our measurements may indicate the presence of weak mean longitudinal magnetic fields of the order of 100 Gauss in the central star of the young elliptical planetary nebula IC 418 as well as in the Wolf-Rayet type central star of the bipolar nebula Hen 2-113 and the weak emission line central star of the elliptical nebula Hen 2-131. A clear detection of a 250 G mean longitudinal field is achieved for the A-type companion of the central star of NGC 1514. Some of the central stars show a moderate night-to-night spectrum variability, which may be the signature of a variable stellar wind and/or rotational modulation due to magnetic features. Conclusions. Since our analysis indicates only weak fields, if any, in a few targets of our sample, we conclude that strong magnetic fields of the order of kG are not widespread among PNe central stars. Nevertheless, simple estimates based on a theoretical model of magnetized wind bubbles suggest that even weak magnetic fields below the current detection limit of the order of 100 G may well be sufficient to contribute to the shaping of the surrounding nebulae throughout their evolution. Our current sample is too small to draw conclusions about a correlation between nebular morphology and the presence of stellar magnetic fields. KW - planetary nebulae: general KW - stars: magnetic field KW - stars: AGB and post-AGB KW - binaries: close KW - techniques: polarimetric Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201423842 SN - 0004-6361 SN - 1432-0746 VL - 570 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Kholtygin, A. F. A1 - Fabrika, S. N. A1 - Rusomarov, N. A1 - Hamann, Wolf-Rainer A1 - Kudryavtsev, D. O. A1 - Oskinova, Lida A1 - Chountonov, G. A. T1 - Line profile variability and magnetic fields of Wolf-Rayet stars: WR 135 and WR 136 JF - ASTRONOMISCHE NACHRICHTEN N2 - We have obtained spectropolarimetric observations of two Wolf-Rayet stars, WR 135 (WC8) and WR 136 (WN6), with the 6-m Russian telescope in July 2009 and July 2010. We have studied the He II 5412 angstrom line region, which contains also the C IV 5469 angstrom line (for WR 135 only). Our goals were to investigate the rapid line-profile variability (LPV) in WR star spectra and to search for magnetic fields. We find small amplitude emission peaks moving from the center of He II line to its wings during the night in spectra of both stars. These emission peaks are likely a signature of accelerating clumps in the stellar wind. We obtained upper limits of the magnetic field strength: approximate to 200G for WR 135 and approximate to 50G for WR 136. (C) 2011 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim KW - stars: atmospheres KW - stars: magnetic fields KW - stars: winds KW - stars: Wolf-Rayet KW - techniques: polarimetric Y1 - 2011 U6 - https://doi.org/10.1002/asna.201111595 SN - 0004-6337 VL - 332 IS - 9-10 SP - 1008 EP - 1011 PB - WILEY-BLACKWELL CY - MALDEN ER -