TY - THES A1 - Antonelli, Andrea T1 - Accurate waveform models for gravitational-wave astrophysics: synergetic approaches from analytical relativity N2 - Gravitational-wave (GW) astrophysics is a field in full blossom. Since the landmark detection of GWs from a binary black hole on September 14th 2015, fifty-two compact-object binaries have been reported by the LIGO-Virgo collaboration. Such events carry astrophysical and cosmological information ranging from an understanding of how black holes and neutron stars are formed, what neutron stars are composed of, how the Universe expands, and allow testing general relativity in the highly-dynamical strong-field regime. It is the goal of GW astrophysics to extract such information as accurately as possible. Yet, this is only possible if the tools and technology used to detect and analyze GWs are advanced enough. A key aspect of GW searches are waveform models, which encapsulate our best predictions for the gravitational radiation under a certain set of parameters, and that need to be cross-correlated with data to extract GW signals. Waveforms must be very accurate to avoid missing important physics in the data, which might be the key to answer the fundamental questions of GW astrophysics. The continuous improvements of the current LIGO-Virgo detectors, the development of next-generation ground-based detectors such as the Einstein Telescope or the Cosmic Explorer, as well as the development of the Laser Interferometer Space Antenna (LISA), demand accurate waveform models. While available models are enough to capture the low spins, comparable-mass binaries routinely detected in LIGO-Virgo searches, those for sources from both current and next-generation ground-based and spaceborne detectors must be accurate enough to detect binaries with large spins and asymmetry in the masses. Moreover, the thousands of sources that we expect to detect with future detectors demand accurate waveforms to mitigate biases in the estimation of signals’ parameters due to the presence of a foreground of many sources that overlap in the frequency band. This is recognized as one of the biggest challenges for the analysis of future-detectors’ data, since biases might hinder the extraction of important astrophysical and cosmological information from future detectors’ data. In the first part of this thesis, we discuss how to improve waveform models for binaries with high spins and asymmetry in the masses. In the second, we present the first generic metrics that have been proposed to predict biases in the presence of a foreground of many overlapping signals in GW data. For the first task, we will focus on several classes of analytical techniques. Current models for LIGO and Virgo studies are based on the post-Newtonian (PN, weak-field, small velocities) approximation that is most natural for the bound orbits that are routinely detected in GW searches. However, two other approximations have risen in prominence, the post-Minkowskian (PM, weak- field only) approximation natural for unbound (scattering) orbits and the small-mass-ratio (SMR) approximation typical of binaries in which the mass of one body is much bigger than the other. These are most appropriate to binaries with high asymmetry in the masses that challenge current waveform models. Moreover, they allow one to “cover” regions of the parameter space of coalescing binaries, thereby improving the interpolation (and faithfulness) of waveform models. The analytical approximations to the relativistic two-body problem can synergically be included within the effective-one-body (EOB) formalism, in which the two-body information from each approximation can be recast into an effective problem of a mass orbiting a deformed Schwarzschild (or Kerr) black hole. The hope is that the resultant models can cover both the low-spin comparable-mass binaries that are routinely detected, and the ones that challenge current models. The first part of this thesis is dedicated to a study about how to best incorporate information from the PN, PM, SMR and EOB approaches in a synergistic way. We also discuss how accurate the resulting waveforms are, as compared against numerical-relativity (NR) simulations. We begin by comparing PM models, whether alone or recast in the EOB framework, against PN models and NR simulations. We will show that PM information has the potential to improve currently-employed models for LIGO and Virgo, especially if recast within the EOB formalism. This is very important, as the PM approximation comes with a host of new computational techniques from particle physics to exploit. Then, we show how a combination of PM and SMR approximations can be employed to access previously-unknown PN orders, deriving the third subleading PN dynamics for spin-orbit and (aligned) spin1-spin2 couplings. Such new results can then be included in the EOB models currently used in GW searches and parameter estimation studies, thereby improving them when the binaries have high spins. Finally, we build an EOB model for quasi-circular nonspinning binaries based on the SMR approximation (rather than the PN one as usually done). We show how this is done in detail without incurring in the divergences that had affected previous attempts, and compare the resultant model against NR simulations. We find that the SMR approximation is an excellent approximation for all (quasi-circular nonspinning) binaries, including both the equal-mass binaries that are routinely detected in GW searches and the ones with highly asymmetric masses. In particular, the SMR-based models compare much better than the PN models, suggesting that SMR-informed EOB models might be the key to model binaries in the future. In the second task of this thesis, we work within the linear-signal ap- proximation and describe generic metrics to predict inference biases on the parameters of a GW source of interest in the presence of confusion noise from unfitted foregrounds and from residuals of other signals that have been incorrectly fitted out. We illustrate the formalism with simple (yet realistic) LISA sources, and demonstrate its validity against Monte-Carlo simulations. The metrics we describe pave the way for more realistic studies to quantify the biases with future ground-based and spaceborne detectors. N2 - Wenn zwei kompakte Objekte wie Schwarze Löcher oder Neutronensterne kollidieren, wird der Raum und die Zeit um sie herum stark gekrümmt. Der effekt sind Störungen der Raumzeit, sogenannte Gravitationswellen, die sich im gesamten Universum ausbreiten. Mit den leistungsstarken und präzisen Netzwerken von Detektoren und der Arbeit vieler Wissenschaftler rund um den Globus kann man Gravitationswellen auf der Erde messen. Gravitationswellen tragen Informationen über das System, das sie erzeugt hat. Insbesondere kann man erfahren, wie sich die kompakten Objekte gebildet haben und woraus sie bestehen. Daraus lässt sich ableiten, wie sich das Universum ausdehnt, und man kann die Allgemeine Relativitätstheorie in Regionen mit starker Gravitation testen. Um diese Informationen zu extrahieren, werden genaue Modelle benötigt. Modelle können entweder numerisch durch Lösen der berühmten Einstein-Gleichungen oder analytisch durch Annäherung an deren Lösungen gewonnen werden. In meiner Arbeit haben wir den zweiten Ansatz verfolgt, um sehr genaue Vorhersagen für die Signale zu erhalten, die bei kommenden Beobachtungen durch Gravitationswellendetektoren verwendet werden können. KW - gravitational waves KW - Gravitationswellen KW - general relativity KW - allgemeine Relativitätstheorie KW - data analysis KW - Datenanalyse Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-576671 ER - TY - THES A1 - Amaro-Seoane, Pau T1 - Dense stellar systems and massive black holes T1 - Dichte stellare Systeme und massive Schwarze Löcher BT - sources of gravitational radiation and tidal disruptions BT - Quellen von Gravitationsstrahlung und Gezeiten-Sternzerissereignissen N2 - Gravity dictates the structure of the whole Universe and, although it is triumphantly described by the theory of General Relativity, it is the force that we least understand in nature. One of the cardinal predictions of this theory are black holes. Massive, dark objects are found in the majority of galaxies. Our own galactic center very contains such an object with a mass of about four million solar masses. Are these objects supermassive black holes (SMBHs), or do we need alternatives? The answer lies in the event horizon, the characteristic that defines a black hole. The key to probe the horizon is to model the movement of stars around a SMBH, and the interactions between them, and look for deviations from real observations. Nuclear star clusters harboring a massive, dark object with a mass of up to ~ ten million solar masses are good testbeds to probe the event horizon of the potential SMBH with stars. The channel for interactions between stars and the central MBH are the fact that (a) compact stars and stellar-mass black holes can gradually inspiral into the SMBH due to the emission of gravitational radiation, which is known as an “Extreme Mass Ratio Inspiral” (EMRI), and (b) stars can produce gases which will be accreted by the SMBH through normal stellar evolution, or by collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the SMBH. These two processes involve different disciplines, which combined will provide us with detailed information about the fabric of space and time. In this habilitation I present nine articles of my recent work directly related with these topics. N2 - Die Gravitation bestimmt die Struktur des ganzen Universums und ist, obwohl sie mit großem Erfolg durch die Theorie der Allgemeinen Relativitätstheorie beschrieben wird, die am wenigsten verstandene Kraft in der Natur. Eine der grundsätzlichsten Vorhersagen dieser Theorie sind Schwarze Löcher. Massive, dunkle Objekte befinden sich in einem Großteil aller Galaxien. Das Zentrum unserer eigenen Galaxis enthält solch ein Objekt mit einer Masse von etwa vier Millionen Sonnenmassen. Sind diese Objekte supermassive Schwarze Löcher oder brauchen wir Alternativen? Die Antwort liegt im Ereignishorizont, der Eigenschaft, die ein Schwarzes Loch definiert. Der Schlüssel um den Ereignishorizont zu untersuchen ist, die Bewegungen der Sterne um eine Supermassives Schwarzes Loch zu modellieren, sowie deren Interaktionen, und nach Abweichungen von unseren Erwartungen in echten Beobachtungen zu suchen. Zentrale Sternhaufen, die ein massives, dunkles Objekt mit einer Masse bis zu ∼ zehn Millionen Sonnenmassen enthalten, sind gute Laborarien um den Ereignishorizont eines möglichen supermassiven Schwarzen Lochs mit Hilfe von Sternen zu untersuchen. Die Kanäle für mögliche Wechselwirkungen zwischen Sternen und einem zentralen Schwarzen Loch sind: (a) Kompakte Sternreste und stellare Schwarze Löcher können durch die Emission von Gravitationswellen allmählich auf spiralförmigen Orbits in das supermassive Schwarze Loch fallen, was als “Extreme Mass Ratio Inspiral” (EMRI) bezeichent wird. (b) Durch normale Sternentwicklung (Sternwinde) sowie durch Sternkollisionen oder Zerstörung von Sternen im starken zentralen Gezeitenfeld kann Gas freigesetzt werden, welches anschließend vom supermassiven Schwarzen Loch akkretiert werden kann. Solche Prozesse können wesentlich zur Masse eines Supermassiven Schwarzen Lochs beitragen. Die beiden Prozesse (a und b) beinhalten verschiedene astrophysikalische Aspekte, welche uns in ihrer Kombination mit detaillierter Information über die Beschaffenheit der Raumzeit versorgen. In dieser Habilitationsschrift präsentiere ich neun Artikel aus meiner jüngeren Forschungsarbeit, welche direkt Probleme aus diesen Themenbereichen behandeln. KW - stellar dynamics KW - massive black holes KW - gravitational waves KW - general relativity KW - Stellardynamik KW - massive Schwarze Löcher KW - Gravitationswellen KW - allgemeine Relativitätstheorie Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95439 ER - TY - GEN A1 - Rätzel, Dennis A1 - Wilkens, Martin A1 - Menzel, Ralf T1 - Gravitational properties of light BT - the gravitational field of a laser pulse N2 - The gravitational field of a laser pulse of finite lifetime, is investigated in the framework of linearized gravity. Although the effects are very small, they may be of fundamental physical interest. It is shown that the gravitational field of a linearly polarized light pulse is modulated as the norm of the corresponding electric field strength, while no modulations arise for circular polarization. In general, the gravitational field is independent of the polarization direction. It is shown that all physical effects are confined to spherical shells expanding with the speed of light, and that these shells are imprints of the spacetime events representing emission and absorption of the pulse. Nearby test particles at rest are attracted towards the pulse trajectory by the gravitational field due to the emission of the pulse, and they are repelled from the pulse trajectory by the gravitational field due to its absorption. Examples are given for the size of the attractive effect. It is recovered that massless test particles do not experience any physical effect if they are co-propagating with the pulse, and that the acceleration of massless test particles counter-propagating with respect to the pulse is four times stronger than for massive particles at rest. The similarities between the gravitational effect of a laser pulse and Newtonian gravity in two dimensions are pointed out. The spacetime curvature close to the pulse is compared to that induced by gravitational waves from astronomical sources. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 222 KW - electromagnetic radiation KW - general relativity KW - gravity KW - laser pulses KW - linearized gravity KW - pp-wave solutions Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90553 ER - TY - JOUR A1 - Rätzel, Dennis A1 - Wilkens, Martin A1 - Menzel, Ralf T1 - Gravitational properties of light BT - the gravitational field of a laser pulse JF - New journal of physics : the open-access journal for physics N2 - The gravitational field of a laser pulse of finite lifetime, is investigated in the framework of linearized gravity. Although the effects are very small, they may be of fundamental physical interest. It is shown that the gravitational field of a linearly polarized light pulse is modulated as the norm of the corresponding electric field strength, while no modulations arise for circular polarization. In general, the gravitational field is independent of the polarization direction. It is shown that all physical effects are confined to spherical shells expanding with the speed of light, and that these shells are imprints of the spacetime events representing emission and absorption of the pulse. Nearby test particles at rest are attracted towards the pulse trajectory by the gravitational field due to the emission of the pulse, and they are repelled from the pulse trajectory by the gravitational field due to its absorption. Examples are given for the size of the attractive effect. It is recovered that massless test particles do not experience any physical effect if they are co-propagating with the pulse, and that the acceleration of massless test particles counter-propagating with respect to the pulse is four times stronger than for massive particles at rest. The similarities between the gravitational effect of a laser pulse and Newtonian gravity in two dimensions are pointed out. The spacetime curvature close to the pulse is compared to that induced by gravitational waves from astronomical sources. KW - gravity KW - general relativity KW - laser pulses KW - electromagnetic radiation KW - linearized gravity KW - pp-wave solutions Y1 - 2016 U6 - https://doi.org/10.1088/1367-2630/18/2/023009 SN - 1367-2630 VL - 18 SP - 1 EP - 16 PB - IOP Science CY - London ER - TY - JOUR A1 - Rätzel, Dennis A1 - Wilkens, Martin A1 - Menzel, Ralf T1 - Gravitational properties of light-the gravitational field of a laser pulse JF - NEW JOURNAL OF PHYSICS N2 - The gravitational field of a laser pulse of finite lifetime, is investigated in the framework of linearized gravity. Although the effects are very small, they may be of fundamental physical interest. It is shown that the gravitational field of a linearly polarized light pulse is modulated as the norm of the corresponding electric field strength, while no modulations arise for circular polarization. In general, the gravitational field is independent of the polarization direction. It is shown that all physical effects are confined to spherical shells expanding with the speed of light, and that these shells are imprints of the spacetime events representing emission and absorption of the pulse. Nearby test particles at rest are attracted towards the pulse trajectory by the gravitational field due to the emission of the pulse, and they are repelled from the pulse trajectory by the gravitational field due to its absorption. Examples are given for the size of the attractive effect. It is recovered that massless test particles do not experience any physical effect if they are co-propagating with the pulse, and that the acceleration of massless test particles counter-propagating with respect to the pulse is four times stronger than for massive particles at rest. The similarities between the gravitational effect of a laser pulse and Newtonian gravity in two dimensions are pointed out. The spacetime curvature close to the pulse is compared to that induced by gravitational waves from astronomical sources. KW - gravity KW - general relativity KW - laser pulses KW - electromagnetic radiation KW - linearized gravity KW - pp-wave solutions Y1 - 2016 U6 - https://doi.org/10.1088/1367-2630/18/2/023009 SN - 1367-2630 VL - 18 PB - IOP Publ. Ltd. CY - Bristol ER - TY - THES A1 - Mösta, Philipp T1 - Novel aspects of the dynamics of binary black-hole mergers T1 - Neue Aspekte der Dynamik von Kollisionen binärer schwarzer Löcher N2 - The inspiral and merger of two black holes is among the most exciting and extreme events in our universe. Being one of the loudest sources of gravitational waves, they provide a unique dynamical probe of strong-field general relativity and a fertile ground for the observation of fundamental physics. While the detection of gravitational waves alone will allow us to observe our universe through an entirely new window, combining the information obtained from both gravitational wave and electro-magnetic observations will allow us to gain even greater insight in some of the most exciting astrophysical phenomena. In addition, binary black-hole mergers serve as an intriguing tool to study the geometry of space-time itself. In this dissertation we study the merger process of binary black-holes in a variety of conditions. Our results show that asymmetries in the curvature distribution on the common apparent horizon are correlated to the linear momentum acquired by the merger remnant. We propose useful tools for the analysis of black holes in the dynamical and isolated horizon frameworks and shed light on how the final merger of apparent horizons proceeds after a common horizon has already formed. We connect mathematical theorems with data obtained from numerical simulations and provide a first glimpse on the behavior of these surfaces in situations not accessible to analytical tools. We study electro-magnetic counterparts of super-massive binary black-hole mergers with fully 3D general relativistic simulations of binary black-holes immersed both in a uniform magnetic field in vacuum and in a tenuous plasma. We find that while a direct detection of merger signatures with current electro-magnetic telescopes is unlikely, secondary emission, either by altering the accretion rate of the circumbinary disk or by synchrotron radiation from accelerated charges, may be detectable. We propose a novel approach to measure the electro-magnetic radiation in these simulations and find a non-collimated emission that dominates over the collimated one appearing in the form of dual jets associated with each of the black holes. Finally, we provide an optimized gravitational wave detection pipeline using phenomenological waveforms for signals from compact binary coalescence and show that by including spin effects in the waveform templates, the detection efficiency is drastically improved as well as the bias on recovered source parameters reduced. On the whole, this disseration provides evidence that a multi-messenger approach to binary black-hole merger observations provides an exciting prospect to understand these sources and, ultimately, our universe. N2 - Schwarze Löcher gehören zu den extremsten und faszinierensten Objekten in unserem Universum. Elektromagnetische Strahlung kann nicht aus ihrem Inneren entkommen, und sie bilden die kompaktesten Objekte, die wir kennen. Wir wissen heute, dass in den Zentren der meisten Galaxien sehr massereiche schwarze Löcher vorhanden sind. Im Fall unserer eigenen Galaxie, der Milchstrasse, ist dieses schwarze Loch ungefähr vier Millionen mal so schwer wie unsere Sonne. Wenn zwei Galaxien miteinander kollidieren, führt dies auch dazu, dass ihre beiden schwarzen Löcher kollidieren und zu einem einzelnen schwarzen Loch verschmelzen. Das Simulieren einer solchen Kollision von zwei schwarzen Löchern, die Vorhersage sowie Analyse der von ihnen abgestrahlten Energie in Form von Gravitations- und elektromagnetischen Wellen, bildet das Thema der vorliegenden Dissertation. Im ersten Teil dieser Arbeit untersuchen wir die Verschmelzung von zwei schwarzen Löchern unter verschiedenen Gesichtspunkten. Wir zeigen, dass Ungleichmässigkeiten in der Geometrie des aus einer Kollision entstehenden schwarzen Loches dazu führen, dass es zuerst beschleunigt und dann abgebremst wird, bis diese Ungleichmässigkeiten in Form von Gravitationswellen abgetrahlt sind. Weiterhin untersuchen wir, wie der genaue Verschmelzungsprozess aus einer geometrischen Sicht abläuft und schlagen neue Methoden zur Analyse der Raumzeitgeometrie in Systemen vor, die schwarze Löcher enthalten. Im zweiten Teil dieser Arbeit beschäftigen wir uns mit den Gravitationswellen und elektromagnetischer Strahlung, die bei einer Kollision von zwei schwarzen Löchern freigesetzt wird. Gravitationswellen sind Wellen, die Raum und Zeit dehnen und komprimieren. Durchläuft uns eine Gravitationswelle, werden wir in einer Richtung minimal gestreckt, während wir in einer anderen Richtung minimal zusammengedrückt werden. Diese Effekte sind allerdings so klein, dass wir sie weder spüren, noch auf einfache Weise messen können. Bei einer Kollision von zwei schwarzen Löchern wird eine grosse Menge Energie in Form von Gravitationswellen und elektromagnetischen Wellen abgestrahlt. Wir zeigen, dass beide Signale in ihrer Struktur sehr ähnlich sind, dass aber die abgestrahlte Energie in Gravitationswellen um ein Vielfaches grösser ist als in elektromagnetischer Strahlung. Wir führen eine neue Methode ein, um die elektromagnetische Strahlung in unseren Simulationen zu messen und zeigen, dass diese dazu führt, dass sich die räumliche Struktur der Strahlung verändert. Abschliessend folgern wir, dass in der Kombination der Signale aus Gravitationswellen und elektromagnetischer Strahlung eine grosse Chance liegt, ein System aus zwei schwarzen Löchern zu detektieren und in einem weiteren Schritt zu analysieren. Im dritten und letzen Teil dieser Dissertation entwickeln wir ein verbessertes Suchverfahren für Gravitationswellen, dass in modernen Laser-Interferometerexperimenten genutzt werden kann. Wir zeigen, wie dieses Verfahren die Chancen für die Detektion eines Gravitationswellensignals deutlich erhöht, und auch, dass im Falle einer erfolgreichen Detektion eines solchen Signals, seine Parameter besser bestimmt werden können. Wir schliessen die Arbeit mit dem Fazit, dass die Kollision von zwei schwarzen Löchern ein hochinteressantes Phenomenon darstellt, das uns neue Möglichkeiten bietet die Gravitation sowie eine Vielzahl anderer fundamentaler Vorgänge in unserem Universum besser zu verstehen. KW - schwarze Löcher KW - elektromagnetische Strahlung KW - Allgemeine Relativitätstheorie KW - Gravitationswellen KW - Raumzeitgeometrie KW - black-holes KW - gravitational waves KW - electromagnetic counterparts KW - general relativity KW - space-time geometry Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-59820 ER -