TY - JOUR A1 - Pietzsch, Annette A1 - Niskanen, Johannes A1 - Vaz da Cruz, Vinicius A1 - Büchner, Robby A1 - Eckert, Sebastian A1 - Fondell, Mattis A1 - Jay, Raphael Martin A1 - Lu, Xingye A1 - McNally, Daniel A1 - Schmitt, Thorsten A1 - Föhlisch, Alexander T1 - Cuts through the manifold of molecular H2O potential energy surfaces in liquid water at ambient conditions JF - Proceedings of the National Academy of Sciences of the United States of America N2 - The fluctuating hydrogen bridge bonded network of liquid water at ambient conditions entails a varied ensemble of the underlying constituting H2O molecular moieties. This is mirrored in a manifold of the H2O molecular potentials. Subnatural line width resonant inelastic X-ray scattering allowed us to quantify the manifold of molecular potential energy surfaces along the H2O symmetric normal mode and the local asymmetric O-H bond coordinate up to 1 and 1.5 angstrom, respectively. The comparison of the single H2O molecular potentials and spectroscopic signatures with the ambient conditions liquid phase H2O molecular potentials is done on various levels. In the gas phase, first principles, Morse potentials, and stepwise harmonic potential reconstruction have been employed and benchmarked. In the liquid phase the determination of the potential energy manifold along the local asymmetric O-H bond coordinate from resonant inelastic X-ray scattering via the bound state oxygen ls to 4a(1) resonance is treated within these frameworks. The potential energy surface manifold along the symmetric stretch from resonant inelastic X-ray scattering via the oxygen 1 s to 2b(2) resonance is based on stepwise harmonic reconstruction. We find in liquid water at ambient conditions H2O molecular potentials ranging from the weak interaction limit to strongly distorted potentials which are put into perspective to established parameters, i.e., intermolecular O-H, H-H, and O-O correlation lengths from neutron scattering. KW - water KW - potential ene rgy surface KW - RIXS Y1 - 2022 U6 - https://doi.org/10.1073/pnas.2118101119 SN - 1091-6490 VL - 119 IS - 28 PB - National Acad. of Sciences CY - Washington, DC ER - TY - GEN A1 - Fondell, Mattis A1 - Eckert, Sebastian A1 - Jay, Raphael Martin A1 - Weniger, Christian A1 - Quevedo, Wilson A1 - Niskanen, Johannes A1 - Kennedy, Brian A1 - Sorgenfrei, Nomi A1 - Schick, Daniel A1 - Giangrisostomi, Erika A1 - Ovsyannikov, Ruslan A1 - Adamczyk, Katrin A1 - Huse, Nils A1 - Wernet, Philippe A1 - Mitzner, Rolf A1 - Föhlisch, Alexander T1 - Time-resolved soft X-ray absorption spectroscopy in transmission mode on liquids at MHz repetition rates T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - We present a setup combining a liquid flatjet sample delivery and a MHz laser system for time-resolved soft X-ray absorption measurements of liquid samples at the high brilliance undulator beamline UE52-SGM at Bessy II yielding unprecedented statistics in this spectral range. We demonstrate that the efficient detection of transient absorption changes in transmission mode enables the identification of photoexcited species in dilute samples. With iron(II)-trisbipyridine in aqueous solution as a benchmark system, we present absorption measurements at various edges in the soft X-ray regime. In combination with the wavelength tunability of the laser system, the set-up opens up opportunities to study the photochemistry of many systems at low concentrations, relevant to materials sciences, chemistry, and biology. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 780 KW - l-edge xas KW - electronic-structure KW - molecular-structure KW - spin-state KW - dynamics KW - complexes KW - probe KW - water KW - iron(II) KW - spectra Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437529 SN - 1866-8372 IS - 780 ER -