TY - JOUR A1 - Tanentzap, Andrew J. A1 - Lee, William G. A1 - Schulz, Katharina A. C. T1 - Niches drive peaked and positive relationships between diversity and disturbance in natural ecosystems JF - Ecosphere : the magazine of the International Ecology University N2 - A unified understanding of the relationship between disturbance and biodiversity is needed to predict biotic responses to global change. Recent advances have identified the need to deconstruct traditional models of disturbance into intensity and frequency to reconcile empirical studies that appear to generate contradictory associations between species diversity and disturbance. We integrate results from theoretical simulation modelling, field-based surveys of 5176 vegetation plots from 48 transects across 6 sites, and experimental pot-based manipulations of flooding to identify how disturbance drives species diversity within ephemeral wetlands in South Island, New Zealand. We find empirical, hump-shaped and positive relationships between species diversity and both disturbance intensity and frequency, mirroring patterns from a simulation model in which species differed in their demographic responses to disturbance. More generally, our simulations show that the relationships between diversity and disturbance shift from positive to hump-shaped to negative as species that are favored at low disturbance because of their resistance strategies, defined by low mortality and recruitment, decline within communities relative to resilient species. Resilient species with higher mortality and recruitment rates are instead favored as disturbance intensity and frequency intensify. Our theoretical findings suggest that sites must also have a third group of unique species with intermediate resilience and resistance. Analyses of community composition along our disturbance gradients support this prediction, emphasizing that shifts in community-level resistance and resilience drive empirical associations between diversity and disturbance. Overall, terrestrial plants may be unable to resist intense and frequent flooding, even with specialized traits. Only fast-growing species with high regeneration from seed may respond once flooding subsides and dominate community composition in these situations, especially on nutrient-rich soils. However, different strategies can co-occur at intermediate disturbance, ultimately increasing species richness. As disturbances become more pervasive globally, our results suggest that differences in the niches of species, rather than demographic stochasticity, drive biodiversity patterns. These niche-based processes may especially prevail, without accompanying losses in species richness, where sites are initially dominated by resistant taxa or life history strategies that balance resistance and resilience. KW - beta-diversity KW - coexistence KW - community structure KW - functional traits KW - intermediate disturbance hypothesis KW - neutral theory KW - trade-offs Y1 - 2013 U6 - https://doi.org/10.1890/ES13-00102.1 SN - 2150-8925 VL - 4 IS - 11 PB - Wiley CY - Washington ER - TY - JOUR A1 - Dammhahn, Melanie A1 - Rakotondramanana, Claude Fabienne A1 - Goodman, Steven M. T1 - Coexistence of morphologically similar bats (Vespertilionidae) on Madagascar: stable isotopes reveal fine-grained niche differentiation among cryptic species JF - Journal of tropical ecology N2 - Based on niche theory, closely related and morphologically similar species are not predicted to coexist due to overlap in resource and habitat use. Local assemblages of bats often contain cryptic taxa, which co-occur despite notable similarities in morphology and ecology. We measured in two different habitat types on Madagascar levels of stable carbon and nitrogen isotopes in hair (n = 103) and faeces (n = 57) of cryptic Vespertilionidae taxa to indirectly examine whether fine-grained trophic niche differentiation explains their coexistence. In the dry deciduous forest (Kirindy), six sympatric species ranged over 6.0% in delta N-15, i.e. two trophic levels, and 4.2% in delta C-13 with a community mean of 11.3% in delta N-15 and - 21.0% in delta C-13. In the mesic forest (Antsahabe), three sympatric species ranged over one trophic level (delta N-15: 2.4%, delta C-13: 1.0%) with a community mean of 8.0% delta N-15 and - 21.7% in delta C-13. Multivariate analyses and residual permutation of Euclidian distances in delta C-13- delta N-15 bi-plots revealed in both communities distinct stable isotope signatures and species separation for the hair samples among coexisting Vespertilionidae. Intraspecific variation in faecal and hair stable isotopes did not indicate that seasonal migration might relax competition and thereby facilitate the local co-occurrence of sympatric taxa. KW - Chiroptera KW - community structure KW - congeneric species KW - ecological niches KW - migration KW - Neoromicia KW - Pipistrellus KW - Scotophilus KW - stable carbon KW - stable nitrogen Y1 - 2015 U6 - https://doi.org/10.1017/S0266467414000741 SN - 0266-4674 SN - 1469-7831 VL - 31 SP - 153 EP - 164 PB - Cambridge Univ. Press CY - New York ER - TY - GEN A1 - Dammhahn, Melanie A1 - Rakotondramanana, Claude Fabienne A1 - Goodman, Steven M. T1 - Coexistence of morphologically similar bats (Vespertilionidae) on Madagascar BT - stable isotopes reveal fine-grained niche differentiation among cryptic species T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Based on niche theory, closely related and morphologically similar species are not predicted to coexist due to overlap in resource and habitat use. Local assemblages of bats often contain cryptic taxa, which co-occur despite notable similarities in morphology and ecology. We measured in two different habitat types on Madagascar levels of stable carbon and nitrogen isotopes in hair (n = 103) and faeces (n = 57) of cryptic Vespertilionidae taxa to indirectly examine whether fine-grained trophic niche differentiation explains their coexistence. In the dry deciduous forest (Kirindy), six sympatric species ranged over 6.0% in delta N-15, i.e. two trophic levels, and 4.2% in delta C-13 with a community mean of 11.3% in delta N-15 and - 21.0% in delta C-13. In the mesic forest (Antsahabe), three sympatric species ranged over one trophic level (delta N-15: 2.4%, delta C-13: 1.0%) with a community mean of 8.0% delta N-15 and - 21.7% in delta C-13. Multivariate analyses and residual permutation of Euclidian distances in delta C-13- delta N-15 bi-plots revealed in both communities distinct stable isotope signatures and species separation for the hair samples among coexisting Vespertilionidae. Intraspecific variation in faecal and hair stable isotopes did not indicate that seasonal migration might relax competition and thereby facilitate the local co-occurrence of sympatric taxa. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 590 KW - Chiroptera KW - community structure KW - congeneric species KW - ecological niches KW - migration KW - Neoromicia KW - Pipistrellus KW - Scotophilus KW - stable carbon KW - stable nitrogen Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-414729 SN - 1866-8372 IS - 590 ER - TY - GEN A1 - Dammhahn, Melanie A1 - Goodman, Steven M. T1 - Trophic niche differentiation and microhabitat utilization revealed by stable isotope analyses in a dry-forest bat assemblage at Ankarana, northern Madagascar T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Bats are important components in tropical mammal assemblages. Unravelling the mechanisms allowing multiple syntopic bat species to coexist can provide insights into community ecology. However, dietary information on component species of these assemblages is often difficult to obtain. Here we measuredstable carbon and nitrogen isotopes in hair samples clipped from the backs of 94 specimens to indirectly examine whether trophic niche differentiation and microhabitat segregation explain the coexistence of 16 bat species at Ankarana, northern Madagascar. The assemblage ranged over 4.4% in delta N-15 and was structured into two trophic levels with phytophagous Pteropodidae as primary consumers (c. 3% enriched over plants) and different insectivorous bats as secondary consumers (c. 4% enriched over primary consumers). Bat species utilizing different microhabitats formed distinct isotopic clusters (metric analyses of delta C-13-delta N-15 bi-plots), but taxa foraging in the same microhabitat did not show more pronounced trophic differentiation than those occupying different microhabitats. As revealed by multivariate analyses, no discernible feeding competition was found in the local assemblage amongst congeneric species as compared with non-congeners. In contrast to ecological niche theory, but in accordance with studies on New and Old World bat assemblages, competitive interactions appear to be relaxed at Ankarana and not a prevailing structuring force. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 595 KW - Ankarana KW - canopy effect KW - Chiroptera KW - coexistence KW - community structure KW - congeneric species KW - dry deciduous forest KW - Madagascar Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-415157 SN - 1866-8372 SP - 97 EP - 109 ER -