TY - JOUR A1 - Madadi-Shad, Morteza A1 - Jafarnezhadgero, Amir Ali A1 - Zago, Matteo A1 - Granacher, Urs T1 - Effects of varus knee alignment on gait biomechanics and lower limb muscle activity in boys BT - A cross sectional study JF - Gait & posture N2 - Background: There is evidence that frontal plane lower limb malalignment (e.g., genu varus) is a risk factor for knee osteoarthritis development. However, only scarce information is available on gait biomechanics and muscle activity in boys with genu varus. Research question: To examine the effects of knee varus alignment on lower limb kinematics, kinetics and muscular activity during walking at self-selected speed in boys with genu varus versus healthy age-matched controls. Methods: Thirty-six boys were enrolled in this study and divided into a group of boys with genu varus (n = 18; age: 11.66 +/- 1.64 years) and healthy controls (n = 18; age: 11.44 +/- 1.78 years). Three-dimensional kinematics, ground reaction forces, loading rates, impulses and free moments of both limbs were recorded during five walking trials at self-selected speed. Surface electromyography was recorded for rectus femoris and vastus lateralis/medialis muscles. Results: No significant between-group differences were found for gait speed. Participants in the genu varus group versus controls showed larger peak knee flexion (p = 0.030; d = 0.77), peak knee adduction (p < 0.001; d = 1.63), and peak ankle eversion angles (p < 0.001; d = 2.06). Significantly higher peak ground reaction forces were found at heel contact (vertical [p = 0.002; d = 1.16] and posterior [p < 0.001; d = 1.63] components) and at push off (vertical [p = 0.010; d = 0.93] and anterior [p < 0.001; d = 1.34] components) for genu varus versus controls. Peak medial ground reaction force (p = 0.032; d = 0.76), vertical loading rate (p < 0.001; d = 1.52), anterior-posterior impulse (p = 0.011; d = 0.92), and peak negative free moment (p = 0.030; d = 0.77) were significantly higher in genu varus. Finally, time to reach peak forces was significantly shorter in genu varus boys compared with healthy controls (p < 0.01; d = 0.73-1.60). The genu varus group showed higher activities in vastus lateralis (p < 0.001; d = 1.82) and vastus medialis (p = 0.013; d = 0.90) during the loading phase of walking. Significance: Our study revealed genu varus specific gait characteristics and muscle activities. Greater knee adduction angle in genu varus boys may increase the load on the medial compartment of the knee joint. The observed characteristics in lower limb biomechanics and muscle activity could play a role in the early development of knee osteoarthritis in genu varus boys. KW - Bow leg KW - Quadriceps strength KW - Ground reaction force KW - Pediatric gait KW - Electromyography Y1 - 2019 U6 - https://doi.org/10.1016/j.gaitpost.2019.05.030 SN - 0966-6362 SN - 1879-2219 VL - 72 SP - 69 EP - 75 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Piran Hamlabadi, Milad A1 - Sajedi, Heidar A1 - Granacher, Urs T1 - Recreational runners who recovered from COVID-19 show different running kinetics and muscle activities compared with healthy controls JF - Gait & posture : official journal of Gait and Clinical Movement Analysis Society, European Society of Movement Analysis in Adults and Children, Società Italiana di Analisi del Movimento in Clinica, International Society for Posture and Gait Research N2 - Background: Social isolation through quarantine represents an effective means to prevent COVID-19 infection. A negative side-effect of quarantine is low physical activity. Research question: What are the differences of running kinetics and muscle activities of recreational runners with a history of COVID-19 versus healthy controls? Methods: Forty men and women aged 20-30 years participated in this study and were divided into two experimental groups. Group 1 (age: 24.1 +/- 2.9) consisted of participants with a history of COVID-19 (COVID group) and group 2 (age: 24.2 +/- 2.7) of healthy age and sex-matched controls (controls). Both groups were tested for their running kinetics using a force plate and electromyographic activities (i.e., tibialis anterior [TA], gastrocnemius medialis [Gas-M], biceps femoris [BF], semitendinosus [ST], vastus lateralis [VL], vastus medialis [VM], rectus femoris [RF], gluteus medius [Glut-M]). Results: Results demonstrated higher peak vertical (p = 0.029; d=0.788) and medial (p = 0.004; d=1.119) ground reaction forces (GRFs) during push-off in COVID individuals compared with controls. Moreover, higher peak lateral GRFs were found during heel contact (p = 0.001; d=1.536) in the COVID group. COVID-19 individuals showed a shorter time-to-reach the peak vertical (p = 0.001; d=3.779) and posterior GRFs (p = 0.005; d=1.099) during heel contact. Moreover, the COVID group showed higher Gas-M (p = 0.007; d=1.109) and lower VM activity (p = 0.026; d=0.811) at heel contact. Significance: Different running kinetics and muscle activities were found in COVID-19 individuals versus healthy controls. Therefore, practitioners and therapists are advised to implement balance and/or strength training to improve lower limbs alignment and mediolateral control during dynamic movements in runners who recovered from COVID-19. KW - Quarantine KW - Ground reaction force KW - Electromyography Y1 - 2022 U6 - https://doi.org/10.1016/j.gaitpost.2021.11.002 SN - 0966-6362 SN - 1879-2219 VL - 91 SP - 260 EP - 265 PB - Elsevier CY - Amsterdam [u.a.] ER -