TY - JOUR A1 - Busch, Aglaja A1 - Blasimann, Angela A1 - Henle, Philipp A1 - Baur, Heiner T1 - Neuromuscular activity during stair descent in ACL reconstructed patients BT - a pilot study JF - The Knee N2 - Background: The anterior cruciate ligament (ACL) rupture is a severe knee injury. Altered kinematics and kinetics in ACL reconstructed (ACL-R) patients compared to healthy participants (ACL-I) are known and attributed to an altered sensorimotor control. However, studies on neuromuscular control often lack homogeneous patient cohorts. The objective was to examine neuromuscular activity during stair descent in patients one year after ACL reconstruction. Method: Neuromuscular activity of vastus medialis (VM) and lateralis (VL), biceps femoris (BF) and semitendinosus (ST) was recorded by electromyography in 10 ACL-R (age: 26 +/- 10 years; height: 175 +/- 6 cm; mass: 75 +/- 14 kg) and 10 healthy matched controls (age: 31 +/- 7 years; height: 175 +/- 7 cm; mass: 68 +/- 10 kg). A 10-minute walking treadmill warm-up was used for submaximal normalization. Afterwards participants descended 10 times a six-step stairway at a self-selected speed. The movement was separated into pre-activation (PRE), weight acceptance (WA) and push-off phase (PO). Normalized root mean squares for each muscle, limb and movement phase were calculated. Kruskal-Wallis ANOVA compared ACL-R injured and contralateral leg and the ACL-I leg (alpha = 0.05). Results: Significant increased normalised activity in ST during WA in ACL-R injured leg compared to ACL-I and during PO in VL in the ACL-R contralateral leg compared to ACL-I. Decreased activity was shown in VM in ACL-R injured compared to contralateral leg (p < 0.05). Conclusion: Altered neuromuscular activations are present one year after ACL reconstruction compared to the contralateral and healthy matched control limb. Current standard rehabilitation programs may not be able to fully restore sensorimotor control and demand further investigations. (C) 2018 Elsevier B.V. All rights reserved. KW - Knee KW - Neuromuscular control KW - Sensorimotor control KW - Electromyography KW - Rehabilitation Y1 - 2019 U6 - https://doi.org/10.1016/j.knee.2018.12.011 SN - 0968-0160 SN - 1873-5800 VL - 26 IS - 2 SP - 310 EP - 316 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Baur, Heiner A1 - Müller, Steffen A1 - Hirschmüller, Anja A1 - Cassel, Michael A1 - Weber, Josefine A1 - Mayer, Frank T1 - Comparison in lower leg neuromuscular activity between runners with unilateral mid-portion Achilles tendinopathy and healthy individuals JF - Journal of electromyography and kinesiology N2 - Neuromuscular control in functional situations and possible impairments due to Achilles tendinopathy are not well understood. Thirty controls (CO) and 30 runners with Achilles tendinopathy (AT) were tested on a treadmill at 3.33 m s(-1) (12 km h(-1)). Neuromuscular activity of the lower leg (tibialis anterior, peroneal, and gastrocnemius muscle) was measured by surface electromyography. Mean amplitude values (MAV) for the gait cycle phases preactivation, weight acceptance and push-off were calculated and normalised to the mean activity of the entire gait cycle. MAVs of the tibialis anterior did not differ between CO and AT in any gait cycle phase. The activation of the peroneal muscle was lower in AT in weight acceptance (p = 0.006), whereas no difference between CO and AT was found in preactivation (p = 0.71) and push-off (p = 0.83). Also, MAVs of the gastrocnemius muscle did not differ between AT and CO in preactivity (p = 0.71) but were reduced in AT during weight acceptance (p = 0.001) and push-off (p = 0.04). Achilles tendinopathy does not seem to alter pre-programmed neural control but might induce mechanical deficits of the lower extremity during weight bearing (joint stability). This should be addressed in the therapy process of AT. KW - Ankle joint KW - Electromyography KW - Overuse injury KW - Running gait Y1 - 2011 U6 - https://doi.org/10.1016/j.jelekin.2010.11.010 SN - 1050-6411 VL - 21 IS - 3 SP - 499 EP - 505 PB - Elsevier CY - Oxford ER -