TY - JOUR A1 - Scott, James M. A1 - Konrad-Schmolke, Matthias A1 - O'Brien, Patrick J. A1 - Günter, Christina T1 - High-T, low-P formation of rare olivine-bearing symplectites in variscan eclogite JF - Journal of petrology N2 - Extremely rare veinlets and reaction textures composed of symplectites of olivine (similar to Fo(43-55)) + plagioclase +/- spinel +/- ilmenite, associated with more common pyroxene + plagioclase and amphibole + plagioclase varieties, are preserved within eclogites and garnet pyroxenites in the Moldanubian Zone of the Bohemian Massif. Thermodynamic modelling integrated with conventional geothermometry conducted on an eclogite reveals that the symplectite-forming stage occurred at high T (similar to 850 degrees C) and low P (< 6 and > 2 center dot 5 kbar). The development of the different symplectite types reflects reactions that took place in micro-scale domains. The breakdown of high-P garnet controlled the formation of olivine-bearing and amphibole + plagioclase symplectites, whereas breakdown of high-P omphacite led to formation of pyroxene + plagioclase symplectites. In addition, post-eclogite facies but pre-symplectite stage porphyroblastic amphibole and phlogopite were also replaced by olivine-bearing symplectites. Material transfer calculations and thermodynamic modelling indicate that the formation of different symplectite types was linked despite their different bulk compositions. For example, the olivine-bearing symplectites gained Fe +/- Mg, whereas adjacent amphibole + plagioclase and pyroxene + plagioclase symplectites show losses in Fe and Mg; Al, Si and Ca were also variably exchanged. The olivine-bearing symplectites were particularly sensitive to Na despite the small concentration of this element. In eclogites where Na was readily available, the plagioclase composition in the olivine-bearing symplectites shifted from pure anorthite to bytownite, with the less calcic feldspar partitioning Si and inhibiting the formation of orthopyroxene. This regional high-T, low-P granulite-facies symplectite overprint may have been caused by advective heat loss from rapidly exhumed high-T, high-P granulitic bodies (Gfohl Unit) that were emplaced into and over the middle crust (Monotonous and Varied Series) during Carboniferous continent-continent collision. KW - olivine KW - symplectite KW - eclogite KW - thermodynamics KW - Variscan Y1 - 2013 U6 - https://doi.org/10.1093/petrology/egt015 SN - 0022-3530 SN - 1460-2415 VL - 54 IS - 7 SP - 1375 EP - 1398 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Borghini, Alessia A1 - Ferrero, Silvio A1 - O’Brien, Patrick J. A1 - Laurent, Oscar A1 - Günter, Christina A1 - Ziemann, Martin Andreas T1 - Cryptic metasomatic agent measured in situ in Variscan mantle rocks BT - Melt inclusions in garnet of eclogite, Granulitgebirge, Germany N2 - Garnet of eclogite (formerly termed garnet clinopyroxenite) hosted in lenses of orogenic garnet peridotite from the Granulitgebirge, NW Bohemian Massif, contains unique inclusions of granitic melt, now either glassy or crystallized. Analysed glasses and re‐homogenized inclusions are hydrous, peraluminous, and enriched in highly incompatible elements characteristic of the continental crust such as Cs, Li, B, Pb, Rb, Th, and U. The original melt thus represents a pristine, chemically evolved metasomatic agent, which infiltrated the mantle via deep continental subduction during the Variscan orogeny. The bulk chemical composition of the studied eclogites is similar to that of Fe‐rich basalt and the enrichment in LILE and U suggest a subduction‐related component. All these geochemical features confirm metasomatism. In comparison with many other garnet+clinopyroxene‐bearing lenses in peridotites of the Bohemian Massif, the studied samples from Rubinberg and Klatschmühle are more akin to eclogite than pyroxenites, as reflected in high jadeite content in clinopyroxene, relatively low Mg, Cr, and Ni but relatively high Ti. However, trace elements of both bulk rock and individual mineral phases show also important differences making these samples rather unique. Metasomatism involving a melt requiring a trace element pattern very similar to the composition reported here has been suggested for the source region of rocks of the so‐called durbachite suite, that is, ultrapotassic melanosyenites, which are found throughout the high‐grade Variscan basement. Moreover, the Th, U, Pb, Nb, Ta, and Ti patterns of these newly studied melt inclusions (MI) strongly resemble those observed for peridotite and its enclosed pyroxenite from the T‐7 borehole (Staré, České Středhoři Mountains) in N Bohemia. This suggests that a similar kind of crustal‐derived melt also occurred here. This study of granitic MI in eclogites from peridotites has provided the first direct characterization of a preserved metasomatic melt, possibly responsible for the metasomatism of several parts of the mantle in the Variscides. KW - clinopyroxenite KW - eclogite KW - melt inclusions KW - metasomatism KW - orogenic peridotite Y1 - 2019 U6 - https://doi.org/10.1111/jmg.12519 SN - 1525-1314 SN - 0263-4929 VL - 38 SP - 207 EP - 234 PB - Wiley-Blackwell CY - Oxford [u.a.] ER - TY - GEN A1 - Borghini, Alessia A1 - Ferrero, Silvio A1 - O'Brien, Patrick J. A1 - Laurent, Oscar A1 - Günter, Christina A1 - Ziemann, Martin Andreas T1 - Cryptic metasomatic agent measured in situ in Variscan mantle rocks BT - Melt inclusions in garnet of eclogite, Granulitgebirge, Germany T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Garnet of eclogite (formerly termed garnet clinopyroxenite) hosted in lenses of orogenic garnet peridotite from the Granulitgebirge, NW Bohemian Massif, contains unique inclusions of granitic melt, now either glassy or crystallized. Analysed glasses and re‐homogenized inclusions are hydrous, peraluminous, and enriched in highly incompatible elements characteristic of the continental crust such as Cs, Li, B, Pb, Rb, Th, and U. The original melt thus represents a pristine, chemically evolved metasomatic agent, which infiltrated the mantle via deep continental subduction during the Variscan orogeny. The bulk chemical composition of the studied eclogites is similar to that of Fe‐rich basalt and the enrichment in LILE and U suggest a subduction‐related component. All these geochemical features confirm metasomatism. In comparison with many other garnet+clinopyroxene‐bearing lenses in peridotites of the Bohemian Massif, the studied samples from Rubinberg and Klatschmühle are more akin to eclogite than pyroxenites, as reflected in high jadeite content in clinopyroxene, relatively low Mg, Cr, and Ni but relatively high Ti. However, trace elements of both bulk rock and individual mineral phases show also important differences making these samples rather unique. Metasomatism involving a melt requiring a trace element pattern very similar to the composition reported here has been suggested for the source region of rocks of the so‐called durbachite suite, that is, ultrapotassic melanosyenites, which are found throughout the high‐grade Variscan basement. Moreover, the Th, U, Pb, Nb, Ta, and Ti patterns of these newly studied melt inclusions (MI) strongly resemble those observed for peridotite and its enclosed pyroxenite from the T‐7 borehole (Staré, České Středhoři Mountains) in N Bohemia. This suggests that a similar kind of crustal‐derived melt also occurred here. This study of granitic MI in eclogites from peridotites has provided the first direct characterization of a preserved metasomatic melt, possibly responsible for the metasomatism of several parts of the mantle in the Variscides. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 976 KW - clinopyroxenite KW - eclogite KW - melt inclusions KW - metasomatism KW - orogenic peridotite Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-474592 SN - 1866-8372 IS - 976 SP - 207 EP - 234 ER -