TY - THES A1 - Windirsch-Woiwode, Torben T1 - Permafrost carbon stabilisation by recreating a herbivore-driven ecosystem T1 - Stabilisierung von Permafrostkohlenstoff durch die Wiedereinführung eines Herbivor-geprägten Ökosystems N2 - With Arctic ground as a huge and temperature-sensitive carbon reservoir, maintaining low ground temperatures and frozen conditions to prevent further carbon emissions that contrib-ute to global climate warming is a key element in humankind’s fight to maintain habitable con-ditions on earth. Former studies showed that during the late Pleistocene, Arctic ground condi-tions were generally colder and more stable as the result of an ecosystem dominated by large herbivorous mammals and vast extents of graminoid vegetation – the mammoth steppe. Characterised by high plant productivity (grassland) and low ground insulation due to animal-caused compression and removal of snow, this ecosystem enabled deep permafrost aggrad-ation. Now, with tundra and shrub vegetation common in the terrestrial Arctic, these effects are not in place anymore. However, it appears to be possible to recreate this ecosystem local-ly by artificially increasing animal numbers, and hence keep Arctic ground cold to reduce or-ganic matter decomposition and carbon release into the atmosphere. By measuring thaw depth, total organic carbon and total nitrogen content, stable carbon iso-tope ratio, radiocarbon age, n-alkane and alcohol characteristics and assessing dominant vegetation types along grazing intensity transects in two contrasting Arctic areas, it was found that recreating conditions locally, similar to the mammoth steppe, seems to be possible. For permafrost-affected soil, it was shown that intensive grazing in direct comparison to non-grazed areas reduces active layer depth and leads to higher TOC contents in the active layer soil. For soil only frozen on top in winter, an increase of TOC with grazing intensity could not be found, most likely because of confounding factors such as vertical water and carbon movement, which is not possible with an impermeable layer in permafrost. In both areas, high animal activity led to a vegetation transformation towards species-poor graminoid-dominated landscapes with less shrubs. Lipid biomarker analysis revealed that, even though the available organic material is different between the study areas, in both permafrost-affected and sea-sonally frozen soils the organic material in sites affected by high animal activity was less de-composed than under less intensive grazing pressure. In conclusion, high animal activity af-fects decomposition processes in Arctic soils and the ground thermal regime, visible from reduced active layer depth in permafrost areas. Therefore, grazing management might be utilised to locally stabilise permafrost and reduce Arctic carbon emissions in the future, but is likely not scalable to the entire permafrost region. N2 - Mit dem arktischen Boden als riesigem und temperatursensiblen Kohlenstoffspeicher ist die Aufrechterhaltung niedriger Bodentemperaturen und gefrorener Bedingungen zur Verhinde-rung weiterer Kohlenstoffemissionen, die zum globalen Klimawandel beitragen, ein Schlüs-selelement im Kampf der Menschheit, die Erde weiterhin bewohnbar zu halten. Vorangehen-de Studien ergaben, dass die Bodenbedingungen in der Arktis während des späten Pleisto-zäns im Allgemeinen kälter und dadurch stabiler waren, als Ergebnis eines Ökosystems, das von großen pflanzenfressenden Säugetieren und weiten Flächen grasartiger Vegetation do-miniert wurde - der Mammutsteppe. Gekennzeichnet durch hohe Pflanzenproduktivität (Gras-land) und geringe Bodenisolierung aufgrund von Kompression und Schneeräumung durch Tiere, ermöglichte dieses Ökosystem eine tiefreichende Entwicklung des Permafrosts. Heut-zutage, mit der vorherrschenden Tundra- und Strauchvegetation in der Arktis, sind diese Ef-fekte nicht mehr präsent. Es scheint aber möglich, dieses Ökosystem lokal durch künstliche Erhöhung der Tierbestände nachzubilden und somit den arktischen Boden kühl zu halten, um den Abbau von organischem Material und die Freisetzung von Kohlenstoff in die Atmosphäre zu verringern. Durch Messungen der Auftautiefe, des Gesamtgehalts des organischen Kohlenstoffs und Stickstoffs, des stabilen Kohlenstoff-Isotopenverhältnisses, des Radiocarbonalters, der n-Alkan- und Alkoholcharakteristika sowie durch Bestimmung der vorherrschenden Vegetati-onstypen entlang von Beweidungsgradienten in zwei unterschiedlichen arktischen Gebieten habe ich festgestellt, dass die Schaffung ähnlicher Bedingungen wie in der Mammutsteppe möglich sein könnte. Für durch Permafrost beeinflusste Böden konnte ich zeigen, dass eine intensive Beweidung im direkten Vergleich mit unbeweideten Gebieten die Tiefe der Auftau-schicht verringert und zu höheren Gehalten an organischem Kohlenstoff im oberen Bodenbe-reich führt. Für im Winter nur oberflächlich gefrorene Böden konnte kein Anstieg des organi-schen Kohlenstoffgehalts mit zunehmender Beweidungsintensität festgestellt werden, höchstwahrscheinlich aufgrund von Störfaktoren wie vertikalen Wasser- und Kohlenstoffbe-wegungen, die nicht durch eine undurchlässige Schicht wie beim Permafrost begrenzt sind. In beiden Gebieten führte eine hohe Tieraktivität zu einer Umwandlung der Vegetation hin zu artenarmen, von Gräsern dominierten Landschaften mit weniger Sträuchern. Die Analyse von Lipid-Biomarkern ergab, dass das verfügbare organische Material zwar zwischen den Unter-suchungsgebieten unterschiedlich war, aber sowohl in Permafrostgebieten als auch in saiso-nal gefrorenen Böden in Bereichen mit hoher Tieraktivität weniger stark zersetzt war als unter geringerer Beweidungsintensität. Zusammenfassend beeinflusst eine hohe Tieraktivität die Zersetzungsvorgänge in arktischen Böden und das thermische Regime des Bodens, was sich in einer reduzierten Tiefe der Auftauschicht in Permafrostgebieten widerspiegelt. Daher könn-te das Beweidungsmanagement in Zukunft aktiv eingesetzt werden, um den Permafrost lokal zu stabilisieren und gefroren zu halten sowie die Kohlenstoffemissionen in der Arktis zu ver-ringern. Aufgrund der Größe der Fläche, die in der terrestrischen Arktis von Permafrost be-einflusst ist, wird ein solches Beweidungsmanagement aber nicht als Maßnahme auf die ge-samte Permafrostregion ausgedehnt werden können. KW - permafrost KW - carbon KW - climate change KW - grazing KW - Arctic KW - Arktis KW - Kohlenstoff KW - Klimawandel KW - Beweidung KW - Permafrost Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-624240 ER - TY - THES A1 - Schutjajew, Konstantin T1 - Electrochemical sodium storage in non-graphitizing carbons - insights into mechanisms and synthetic approaches towards high-energy density materials T1 - Elektrochemische Natriumspeicherung in nicht-graphitisierbaren Kohlenstoffen - Untersuchungen zu Mechanismen und synthetische Ansätze für die Darstellung von Materialien mit hohen Energiedichten N2 - To achieve a sustainable energy economy, it is necessary to turn back on the combustion of fossil fuels as a means of energy production and switch to renewable sources. However, their temporal availability does not match societal consumption needs, meaning that renewably generated energy must be stored in its main generation times and allocated during peak consumption periods. Electrochemical energy storage (EES) in general is well suited due to its infrastructural independence and scalability. The lithium ion battery (LIB) takes a special place, among EES systems due to its energy density and efficiency, but the scarcity and uneven geological occurrence of minerals and ores vital for many cell components, and hence the high and fluctuating costs will decelerate its further distribution. The sodium ion battery (SIB) is a promising successor to LIB technology, as the fundamental setup and cell chemistry is similar in the two systems. Yet, the most widespread negative electrode material in LIBs, graphite, cannot be used in SIBs, as it cannot store sufficient amounts of sodium at reasonable potentials. Hence, another carbon allotrope, non-graphitizing or hard carbon (HC) is used in SIBs. This material consists of turbostratically disordered, curved graphene layers, forming regions of graphitic stacking and zones of deviating layers, so-called internal or closed pores. The structural features of HC have a substantial impact of the charge-potential curve exhibited by the carbon when it is used as the negative electrode in an SIB. At defects and edges an adsorption-like mechanism of sodium storage is prevalent, causing a sloping voltage curve, ill-suited for the practical application in SIBs, whereas a constant voltage plateau of relatively high capacities is found immediately after the sloping region, which recent research attributed to the deposition of quasimetallic sodium into the closed pores of HC. Literature on the general mechanism of sodium storage in HCs and especially the role of the closed pore is abundant, but the influence of the pore geometry and chemical nature of the HC on the low-potential sodium deposition is yet in an early stage. Therefore, the scope of this thesis is to investigate these relationships using suitable synthetic and characterization methods. Materials of precisely known morphology, porosity, and chemical structure are prepared in clear distinction to commonly obtained ones and their impact on the sodium storage characteristics is observed. Electrochemical impedance spectroscopy in combination with distribution of relaxation times analysis is further established as a technique to study the sodium storage process, in addition to classical direct current techniques, and an equivalent circuit model is proposed to qualitatively describe the HC sodiation mechanism, based on the recorded data. The obtained knowledge is used to develop a method for the preparation of closed porous and non-porous materials from open porous ones, proving not only the necessity of closed pores for efficient sodium storage, but also providing a method for effective pore closure and hence the increase of the sodium storage capacity and efficiency of carbon materials. The insights obtained and methods developed within this work hence not only contribute to the better understanding of the sodium storage mechanism in carbon materials of SIBs, but can also serve as guidance for the design of efficient electrode materials. N2 - Eine nachhaltige Energiewirtschaft kann nur durch die Abkehr von fossilen Brennstoffen als Energiequellen und den ausschließlichen Einsatz erneuerbarer Quellen für die Energieerzeugung erreicht werden. Da diese jedoch naturgemäß nur diskontinuierlich zur Verfügung stehen und sich die tageszeitliche Verfügbarkeit kaum mit dem Bedarf deckt, muss erneuerbar gewonnene Energie zwischengespeichert werden. Dies kann mittels elektrochemischer Energiespeicher geschehen, wobei sich die Lithium-Ionen-Batterie (LIB) aufgrund ihrer hohen Energiedichte und Effizienz besonders dafür eignet. Da jedoch Ressourcen, welche für entscheidende Zellkomponenten der LIB benötigt werden, knapper werden und oft in geopolitisch komplizierten Regionen vorkommen, muss auch dafür eine Alternative gefunden werden. Die Natrium-Ionen-Batterie (NIB) bietet sich als Nachfolger für LIBs an, da sich die Zellchemie der beiden Systeme ähnelt und somit Kenntnisse direkt aus der LIB-Forschung übernommen werden können. Es erweist sich allerdings als problematisch, dass das kommerziell wichtigste negative Elektrodenmaterial in LIBs, Graphit, nicht für die Anwendung in NIBs eignet und daher eine andere Kohlenstoffmodifikation, sogenannter nicht-graphitisierbarer Kohlenstoff, oder aus dem Englischen hard carbon (HC), verwendet werden muss. HC ist durch eine besondere Art der Fehlordnung geprägt und besteht im Wesentlichen aus Regionen, in denen die Kohlenstoffschichten parallel zueinander verlaufen und aus Regionen, in denen die Schichten innere Hohlräume, sogenannte geschlossene Poren bilden. Die Lade-Entladekurve von HCs ist geprägt von diesen Strukturmerkmalen, sodass sie in einen linear-abflachenden, aus dem Englischen sloping Bereich, und einen Plateaubereich unterteilt werden kann. Die Speicherung im für Energieanwendungen relevanteren Plateaubereich erfolgt durch Abscheidung quasimetallischer Natriumstrukturen in eingangs erwähnten geschlossenen Poren, bei geringen, konstanten Spannungen, wie zahlreiche Forschungsarbeiten unter Berufung auf verschiedene Strukturcharakterisierungsmethoden � uberzeugend nahelegen. Jedoch ist über den Einfluss der Größe und Form der geschlossenen Poren sowie derer chemischer Eigenschaften auf die Natriumspeicherung nur wenig bekannt. Eben diese Fragestellung soll in der vorliegenden Arbeit behandelt werden. Durch die Herstellung von Materialien mit genau definierter und bekannter Morphologie, Porenstruktur sowie chemischer Beschaffenheit wird die Bedeutung dieser Merkmale für die Natriumabscheidung bei geringen Potentialen beleuchtet. Mittels elektrochemischer Impedanzspektroskopie wird desweiteren der Natriumspeichermechanismus detailliert untersucht und die Kinetik der reversiblen Natriumspeicherung mit der der irreversiblen Metallabscheidung verglichen, wobei eine bemerkenswerte Ähnlichkeit der beiden Prozesse zu beobachten ist. Abschließend ist die gezielte Herstellung geschlossenporiger Materialien aus offenporigen Vorläufermaterialien gelungen, welche es nicht nur ermöglicht, geschlossen- und offenporige Materialien ansonsten gleicher Porenstruktur zu vergleichen und die Notwendigkeit geschlossener Poren nachzuweisen, sondern auch die Speicherkapazität und Effizienz der Elektrodenmaterialien zu erhöhen. Insgesamt tragen die im Rahmen der vorliegenden Dissertation gewonnenen Erkenntisse nicht nur zum tiefergehenden Verständnis des Natriumspeichermechanismus in HCs bei, sondern es werden auch synthetische und analytische Methoden vorgestellt, die der weiteren Forschung auf diesem Gebiet dienen werden. KW - sodium-ion batteries KW - energy storage KW - carbon KW - Natrium-Ionen-Akkumulator KW - Energiespeicher KW - Kohlenstoff Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-541894 ER - TY - THES A1 - Schipper, Florian T1 - Biomass derived carbon for new energy storage technologies N2 - The thesis deals with the production and evaluation of porous carbon materials for energy storage technologies, namely super capacitors and lithium sulfur batteries. N2 - Die Doktorarbeit befasst sich mit der Produktion und Evaluierung poröser Kohlenstoffmaterialien für die Anwendung in Energiespeichertechnologien, namentlich Superkondensatoren und Lithiumschwefelbatterien. T2 - Biomasse basierende Kohlenstoffe für neue Energiespeichertechnologien KW - Batterien KW - Superkondensatoren KW - Energiespeicher KW - Lithium-Schwefel-Batterien KW - Kohlenstoff KW - battery KW - supercapacitors KW - energy storage KW - lithium sulfur battery KW - carbon Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-72045 ER - TY - THES A1 - Post, Joachim T1 - Integrated process-based simulation of soil carbon dynamics in river basins under present, recent past and future environmental conditions T1 - Prozessbasierte Modellierung der Bodenkohlenstoffdynamik in Flusseinzugsgebieten unter heutigen und zukünftigen Umweltbedingungen N2 - Soils contain a large amount of carbon (C) that is a critical regulator of the global C budget. Already small changes in the processes governing soil C cycling have the potential to release considerable amounts of CO2, a greenhouse gas (GHG), adding additional radiative forcing to the atmosphere and hence to changing climate. Increased temperatures will probably create a feedback, causing soils to release more GHGs. Furthermore changes in soil C balance impact soil fertility and soil quality, potentially degrading soils and reducing soils function as important resource. Consequently the assessment of soil C dynamics under present, recent past and future environmental conditions is not only of scientific interest and requires an integrated consideration of main factors and processes governing soil C dynamics. To perform this assessment an eco-hydrological modelling tool was used and extended by a process-based description of coupled soil carbon and nitrogen turnover. The extended model aims at delivering sound information on soil C storage changes beside changes in water quality, quantity and vegetation growth under global change impacts in meso- to macro-scale river basins, exemplary demonstrated for a Central European river basin (the Elbe). As a result this study: ▪ Provides information on joint effects of land-use (land cover and land management) and climate changes on croplands soil C balance in the Elbe river basin (Central Europe) presently and in the future. ▪ Evaluates which processes, and at what level of process detail, have to be considered to perform an integrated simulation of soil C dynamics at the meso- to macro-scale and demonstrates the model’s capability to simulate these processes compared to observations. ▪ Proposes a process description relating soil C pools and turnover properties to readily measurable quantities. This reduces the number of model parameters, enhances the comparability of model results to observations, and delivers same performance simulating long-term soil C dynamics as other models. ▪ Presents an extensive assessment of the parameter and input data uncertainty and their importance both temporally and spatially on modelling soil C dynamics. For the basin scale assessments it is estimated that croplands in the Elbe basin currently act as a net source of carbon (net annual C flux of 11 g C m-2 yr-1, 1.57 106 tons CO2 yr-1 entire croplands on average). Although this highly depends on the amount of harvest by-products remaining on the field. Future anticipated climate change and observed climate change in the basin already accelerates soil C loss and increases source strengths (additional 3.2 g C m-2 yr-1, 0.48 106 tons CO2 yr-1 entire croplands). But anticipated changes of agro-economic conditions, translating to altered crop share distributions, display stronger effects on soil C storage than climate change. Depending on future use of land expected to fall out of agricultural use in the future (~ 30 % of croplands area as “surplus” land), the basin either considerably looses soil C and the net annual C flux to the atmosphere increases (surplus used as black fallow) or the basin converts to a net sink of C (sequestering 0.44 106 tons CO2 yr-1 under extensified use as ley-arable) or reacts with decrease in source strength when using bioenergy crops. Bioenergy crops additionally offer a considerable potential for fossil fuel substitution (~37 PJ, 1015 J per year), whereas the basin wide use of harvest by-products for energy generation has to be seen critically although offering an annual energy potential of approximately 125 PJ. Harvest by-products play a central role in soil C reproduction and a percentage between 50 and 80 % should remain on the fields in order to maintain soil quality and fertility. The established modelling tool allows quantifying climate, land use and major land management impacts on soil C balance. New is that the SOM turnover description is embedded in an eco-hydrological river basin model, allowing an integrated consideration of water quantity, water quality, vegetation growth, agricultural productivity and soil carbon changes under different environmental conditions. The methodology and assessment presented here demonstrates the potential for integrated assessment of soil C dynamics alongside with other ecosystem services under global change impacts and provides information on the potentials of soils for climate change mitigation (soil C sequestration) and on their soil fertility status. N2 - Böden speichern große Mengen Kohlenstoff (C) und beeinflussen wesentlich den globalen C Haushalt. Schon geringe Änderungen der Steuergrößen des Bodenkohlenstoffs können dazu führen, dass beträchtliche Mengen CO2, ein Treibhausgas, in die Atmosphäre gelangen und zur globalen Erwärmung und dem Klimawandel beitragen. Der globale Temperaturanstieg verursacht dabei höchstwahrscheinlich eine Rückwirkung auf den Bodenkohlenstoffhaushalt mit einem einhergehenden erhöhten CO2 Fluss der Böden in die Atmosphäre. Weiterhin wirken sich Änderungen im Bodenkohlenstoffhaushalt auf die Bodenfruchtbarkeit und Bodenqualität aus, wobei eine Minderung der Bodenkohlenstoffvorräte wichtige Funtionen des Bodens beeinträchtigt und folglich den Boden als wichtige Ressource nachhaltig beinflusst. Demzufolge ist die Quantifizierung der Bodenkohlenstoffdynamik unter heutigen und zukünftigen Bedingungen von hohem Interesse und erfordert eine integrierte Betrachtung der wesentlichen Faktoren und Prozesse. Zur Quantifizierung wurde ein ökohydrologisches Flusseinzugsgebietsmodell erweitert. Ziel des erweiterten Modells ist es fundierte Informationen zu Veränderungen des Bodenkohlenstoffhaushaltes, neben Veränderungen der Wasserqualität, der Wasserverfügbarkeit und des Vegetationswachstums unter Globalem Wandel in meso- bis makroskaligen Flusseinzugsgebieten bereitzustellen. Dies wird am Beispiel eines zentraleuropäischen Flusseinzugsgebietes (der Elbe) demonstriert. Zusammenfassend ergibt diese Arbeit: ▪ eine Quantifizierung der heutigen und zukünftigen Auswirkungen des Klimawandels sowie von Änderungen der Landnutzung (Bodenbedeckung und Bodenbearbeitung) auf den Bodenkohlenstoffhaushalt agrarisch genutzter Räume im Einzugsgebiet der Elbe. ▪ eine Beurteilung welche Prozesse, und zu welchem Prozessdetail, zur integrierten Simulation der Bodenkohlenstoffdynamik in der meso- bis makroskala zu berücksichtigen sind. Weiterhin wird die Eignung der Modellerweiterung zur Simulation dieser Prozesse unter der Zuhilfenahme von Messwerten dargelegt. ▪ darauf begründet wird eine Prozessbeschreibung vorgeschlagen die die Eigenschaften der Bodenkohlenstoffspeicher und deren Umsetzungsrate mit in der betrachteten Skala zur Verfügung stehenden Messdaten und Geoinformationen verbindet. Die vorgeschlagene Prozessbeschreibung kann als robust hinsichtlich der Parametrisierung angesehen werden, da sie mit vergleichsweise wenigen Modelparametern eine ähnliche Güte wie andere Bodenkohlenstoffmodelle ergibt. ▪ eine umfassende Betrachtung der Modell- und Eingangsdatenunsicherheiten von Modellergebnissen in ihrer räumlichen und zeitlichen Ausprägung. Das in dieser Arbeit vorgestellte Modellsystem erlaubt eine Quantifizierung der Auswirkungen des Klima- und Landnutzungswandels auf den Bodenkohlenstoffhaushalt. Neu dabei ist, dass neben Auswirkungen auf den Bodenkohlenstoffhaushalt auch Auswirkungen auf Wasserverfügbarkeit, Wasserqualität, Vegetationswachstum und landwirtschaftlicher Produktivität erfasst werden können. Die im Rahmen dieser Arbeit dargelegten Ergebnisse erlauben eine integrierte Betrachtung der Auswirkungen des Globalen Wandels auf wichtige Ökosystemfunktionen in meso- bis makro-skaligen Flusseinzugsgebieten. Weiterhin können hier gewonnene Informationen zur Potentialabschätzung der Böden zur Linderung des Klimawandels (durch C Festlegung) und zum Erhalt ihrer Fruchtbarkeit genutzt werden. KW - Kohlenstoff KW - Stickstoff KW - Anthropogene Klimaänderung KW - Bioenergie KW - Unsicherheit KW - Ökohydrologie KW - Ökosystemmodellierung KW - Landnutzungsänderung KW - Modellsensitivität KW - eco-hydrology KW - Ecosystem modelling KW - Carbon KW - Nitrogen KW - land use change KW - climate change KW - terrestrial carbon balance KW - model uncertainty Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-11507 ER - TY - THES A1 - Kubo, Shiori T1 - Nanostructured carbohydrate-derived carbonaceous materials T1 - Nanostrukturierte kohlenstoffbasierte Materialien aus Kohlenhydraten N2 - Nanoporous carbon materials are widely used in industry as adsorbents or catalyst supports, whilst becoming increasingly critical to the developing fields of energy storage / generation or separation technologies. In this thesis, the combined use of carbohydrate hydrothermal carbonisation (HTC) and templating strategies is demonstrated as an efficient route to nanostructured carbonaceous materials. HTC is an aqueous-phase, low-temperature (e.g. 130 – 200 °C) carbonisation, which proceeds via dehydration / poly-condensation of carbon precursors (e.g. carbohydrates and their derivatives), allowing facile access to highly functional carbonaceous materials. Whilst possessing utile, modifiable surface functional groups (e.g. -OH and -C=O-containing moieties), materials synthesised via HTC typically present limited accessible surface area or pore volume. Therefore, this thesis focuses on the development of fabrication routes to HTC materials which present enhanced textural properties and well-defined porosity. In the first discussed synthesis, a combined hard templating / HTC route was investigated using a range of sacrificial inorganic templates (e.g. mesoporous silica beads and macroporous alumina membranes (AAO)). Via pore impregnation of mesoporous silica beads with a biomass-derived carbon source (e.g. 2-furaldehyde) and subsequent HTC at 180 oC, an inorganic / carbonaceous hybrid material was produced. Removal of the template component by acid etching revealed the replication of the silica into mesoporous carbonaceous spheres (particle size ~ 5 μm), representing the inverse morphological structure of the original inorganic body. Surface analysis (e.g. FTIR) indicated a material decorated with hydrophilic (oxygenated) functional groups. Further thermal treatment at increasingly elevated temperatures (e.g. at 350, 550, 750 oC) under inert atmosphere allowed manipulation of functionalities from polar hydrophilic to increasingly non-polar / hydrophobic structural motifs (e.g. extension of the aromatic / pseudo-graphitic nature), thus demonstrating a process capable of simultaneous control of nanostructure and surface / bulk chemistry. As an extension of this approach, carbonaceous tubular nanostructures with controlled surface functionality were synthesised by the nanocasting of uniform, linear macropores of an AAO template (~ 200 nm). In this example, material porosity could be controlled, showing increasingly microporous tube wall features as post carbonisation temperature increased. Additionally, by taking advantage of modifiable surface groups, the introduction of useful polymeric moieties (i.e. grafting of thermoresponsive poly(N-isopropylacrylamide)) was also demonstrated, potentially enabling application of these interesting tubular structures in the fields of biotechnology (e.g. enzyme immobilization) and medicine (e.g. as drug micro-containers). Complimentary to these hard templating routes, a combined HTC / soft templating route for the direct synthesis of ordered porous carbonaceous materials was also developed. After selection of structural directing agents and optimisation of synthesis composition, the F127 triblock copolymer (i.e. ethylene oxide (EO)106 propylene oxide (PO)70 ethylene oxide (EO)106) / D-Fructose system was extensively studied. D-Fructose was found to be a useful carbon precursor as the HTC process could be performed at 130 oC, thus allowing access to stable micellular phase. Thermolytic template removal from the synthesised ordered copolymer / carbon composite yielded functional cuboctahedron single crystalline-like particles (~ 5 μm) with well ordered pore structure of a near perfect cubic Im3m symmetry. N2 sorption analysis revealed a predominantly microporous carbonaceous material (i.e. Type I isotherm, SBET = 257 m2g-1, 79 % microporosity) possessing a pore size of ca. 0.9 nm. The addition of a simple pore swelling additive (e.g. trimethylbenzene (TMB)) to this system was found to direct pore size into the mesopore size domain (i.e. Type IV isotherm, SBET = 116 m2g-1, 60 % mesoporosity) generating pore size of ca. 4 nm. It is proposed that in both cases as HTC proceeds to generate a polyfuran-like network, the organised block copolymer micellular phase is essentially “templated”, either via hydrogen bonding between hydrophilic poly(EO) moiety and the carbohydrate or via hydrophobic interaction between hydrophobic poly(PO) moiety and forming polyfuran-like network, whilst the additive TMB presumably interact with poly(PO) moieties, thus swelling the hydrophobic region expanding the micelle template size further into the mesopore range. N2 - Nanoporöse kohlenstoffbasierte Materialien sind in der Industrie als Adsorbentien und Katalysatorträger weit verbreitet und gewinnen im aufstrebenden Bereich der Energiespeicherung/erzeugung und für Trennverfahren an wachsender Bedeutung. In der vorliegenden Arbeit wird gezeigt, dass die Kombination aus hydrothermaler Karbonisierung von Zuckern (HTC) mit Templatierungsstrategien einen effizienten Weg zu nanostrukturierten kohlenstoffbasierten Materialien darstellt. HTC ist ein in Wasser und bei niedrigen Temperaturen (130 - 200 °C) durchgeführter Karbonisierungsprozess, bei dem Zucker und deren Derivate einen einfachen Zugang zu hochfunktionalisierten Materialien erlauben. Obwohl diese sauerstoffhaltige Funktionalitäten auf der Oberfläche besitzen, an welche andere chemische Gruppen gebunden werden könnten, was die Verwendung für Trennverfahren und in der verzögerten Wirkstofffreisetzung ermöglichen sollte, ist die mittels HTC hergestellte Kohle für solche Anwendungen nicht porös genug. Das Ziel dieser Arbeit ist es daher, Methoden zu entwickeln, um wohldefinierte Poren in solchen Materialien zu erzeugen. Hierbei führte unter anderem der Einsatz von anorganischen formgebenden mesoporösen Silikapartikeln und makroporösen Aluminiumoxid-Membranen zum Erfolg. Durch Zugabe einer Kohlenstoffquelle (z. B. 2-Furfural), HTC und anschließender Entfernung des Templats konnten poröse kohlenstoffbasierte Partikel und röhrenförmige Nanostrukturen hergestellt werden. Gleichzeitig konnte durch eine zusätzliche Nachbehandlung bei hoher Temperatur (350-750 °C) auch noch die Oberflächenfunktionalität hin zu aromatischen Systemen verschoben werden. Analog zur Formgebung durch anorganische Template konnte mit sog. Soft-Templaten, z. B. PEO-PPO-PEO Blockcopolymeren, eine funktionelle poröse Struktur induziert werden. Hierbei machte man sich die Ausbildung geordneter Mizellen mit der Kohlenstoffquelle D-Fructose zu Nutze. Das erhaltene Material wies hochgeordnete Mikroporen mit einem Durchmesser von ca. 0,9 nm auf. Dieser konnte desweiteren durch Zugabe von Quell-Additiven (z. B. Trimethylbenzol) auf 4 nm in den mesoporösen Bereich vergrößert werden. Zusammenfassend lässt sich sagen, dass beide untersuchten Synthesewege nanostrukturierte kohlenstoffbasierte Materialien mit vielfältiger Oberflächenchemie liefern, und das mittels einer bei relativ niedriger Temperatur in Wasser ablaufenden Reaktion und einer billigen, nachhaltigen Kohlenstoffquelle. Die so hergestellten Produkte eröffnen vielseitige Anwendungsmöglichkeiten, z. B. zur Molekültrennung in der Flüssigchromatographie, in der Energiespeicherung als Anodenmaterial in Li-Ionen Akkus oder Superkondensatoren, oder als Trägermaterial für die gezielte Pharmakotherapie. KW - Nanostruktur KW - Kohlenstoff KW - Kohlenhydrate KW - Templating KW - hydrothermale Carbonisierung KW - Nanostructure KW - Carbon KW - Carbohydrate KW - Templating KW - Hydrothermal carbonisation Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53157 ER - TY - THES A1 - Herbrich, Marcus T1 - Einfluss der erosionsbedingten Pedogenese auf den Wasserund Stoffhaushalt ackerbaulich genutzter Böden der Grundmoränenbodenlandschaft NO-Deutschlands - hydropedologische Untersuchungen mittels wägbarer Präzisionslysimeter T1 - Effects of erosion-affected soil evolution on water and dissolved carbon fluxes, soil hydraulic properties, and crop development of soils from a hummocky ground moraine landscape - hydropedological analysis using high precision weighing lysimeters N2 - In the arable soil landscape of hummocky ground moraines, an erosion-affected spatial differentiation of soils can be observed. Man-made erosion leads to soil profile modifications along slopes with changed solum thickness and modified properties of soil horizons due to water erosion in combination with tillage operations. Soil erosion creates, thereby, spatial patterns of soil properties (e.g., texture and organic matter content) and differences in crop development. However, little is known about the manner in which water fluxes are affected by soil-crop interactions depending on contrasting properties of differently-developed soil horizons and how water fluxes influence the carbon transport in an eroded landscape. To identify such feedbacks between erosion-induced soil profile modifications and the 1D-water and solute balance, high-precision weighing lysimeters equipped with a wide range of sensor technique were filled with undisturbed soil monoliths that differed in the degree of past soil erosion. Furthermore, lysimeter effluent concentrations were analyzed for dissolved carbon fractions in bi-weekly intervals. The water balance components measured by high precision lysimeters varied from the most eroded to the less eroded monolith up to 83 % (deep drainage) primarily caused due to varying amounts of precipitation and evapotranspiration for a 3-years period. Here, interactions between crop development and contrasting rainfall interception by above ground biomass could explain differences in water balance components. Concentrations of dissolved carbon in soil water samples were relatively constant in time, suggesting carbon leaching was mainly affected by water fluxes in this observation period. For the lysimeter-based water balance analysis, a filtering scheme was developed considering temporal autocorrelation. The minute-based autocorrelation analysis of mass changes from lysimeter time series revealed characteristic autocorrelation lengths ranging from 23 to 76 minutes. Thereby, temporal autocorrelation provided an optimal approximation of precipitation quantities. However, the high temporal resolution in lysimeter time series is restricted by the lengths of autocorrelation. Erosion-induced but also gradual changes in soil properties were reflected by dynamics of soil water retention properties in the lysimeter soils. Short-term and long-term hysteretic water retention data suggested seasonal wettability problems of soils increasingly limited rewetting of previously dried pore regions. Differences in water retention were assigned to soil tillage operations and the erosion history at different slope positions. The threedimensional spatial pattern of soil types that result from erosional soil profile modifications were also reflected in differences of crop root development at different landscape positions. Contrasting root densities revealed positive relations of root and aboveground plant characteristics. Differences in the spatially-distributed root growth between different eroded soil types provided indications that root development was affected by the erosion-induced soil evolution processes. Overall, the current thesis corroborated the hypothesis that erosion-induced soil profile modifications affect the soil water balance, carbon leaching and soil hydraulic properties, but also the crop root system is influenced by erosion-induced spatial patterns of soil properties in the arable hummocky post glacial soil landscape. The results will help to improve model predictions of water and solute movement in arable soils and to understand interactions between soil erosion and carbon pathways regarding sink-or-source terms in landscapes. N2 - Hydropedologische Wechselwirkungen zwischen Wasserflüssen und erosionsbedingten Veränderungen im Profilaufbau ackerbaulich genutzter Böden treten insbesondere in der Jungmoränenlandschaft auf, die sich durch eine überwiegend flachwellige bis kuppige Topographie auszeichnet. Mit der dynamischen Veränderung von Bodenprofilen, wie etwa der veränderten Solumtiefe und Horizontabfolgen, sowie deren Verteilungen in der Landschaft gehen Veränderungen in den bodenhydraulischen Eigenschaften einher. Über deren Auswirkungen auf den Wasser- und Stoffhaushalt ist bislang nur wenig bekannt. Im Rahmen dieser Dissertation wurden kontinuierliche Messungen aus vier Jahren (2011 bis 2014) unter Verwendung von wägbaren Lysimetern in der ackerbaulich genutzten Bodenlandschaft Nordostdeutschlands (Uckermark) erhoben. Dabei sollte die zentrale Frage, inwieweit die erosionsbedingte Pedogenese, in Wechselwirkung mit der pflanzenbaulichen Nutzung, den Wasser- und Kohlenstoffhaushalt beeinflusst, beantwortet werden. Ziel dieser Arbeit war es, 1D-Wasserflüsse und Austräge an gelöstem Kohlenstoff für unterschiedlich erodierte Bodenprofile zu quantifizieren. Damit einhergehend wurden Untersuchungen zu hydraulischen Bodeneigenschaften sowie möglichen Veränderungen im System Boden-Pflanze (Wurzeluntersuchungen) durchgeführt. Um derartige Veränderungen zwischen unterschiedlich erodierten Böden beschreiben zu können, wurden Bodenmonolithe in ungestörter Lagerung entnommen und in Lysimeteranlagen installiert. Zudem erfolgte eine Instrumentierung der einzelnen Lysimeter mit verschiedener Sensorik, u.a. um Wassergehalte und Matrixpotentiale zu messen. Für stoffhaushaltliche Untersuchungen wurden darüber hinaus Konzentrationen der gelösten Kohlenstofffraktion in der Bodenlösung in 14-tägigen Intervallen bestimmt. Der Wasserhaushalt von sechs gering bis stark erodierten Parabraunerden unterschied sich im Hinblick auf die bilanzierten Wasserhaushaltskomponenten deutlich. Anhand dieser Ergebnisse liegt die Vermutung nahe, dass die dynamischen Veränderungen im Gefüge- und Profilaufbau (in Abhängigkeit von der Bodenerosion) einen Effekt auf die Wasserbilanzen aufweisen. Über die mehrjährige Messperiode von 2011 bis 2014 konnte für das mit einer stark erodierten Parabraunerde gefüllte Lysimeter ein circa 83 Prozent höherer Abfluss als für das Lysimeter mit einer wenig erodierten Parabraunerde gemessen werden. Somit variierte der Abfluss am unteren Rand in Abhängigkeit zum Erosionsgrad. Neben dem unterschiedlichen Abflussverhalten variierten die Bodenmonolithe innerhalb der Lysimeter ebenfalls in den Evapotranspirations- und Niederschlagsmengen, hervorgerufenen durch die Differenzierung in den Horizontabfolgen, -mächtigkeiten und deren Einfluss auf die bodenhydraulischen Eigenschaften in Abhängigkeit vom Pflanzenbewuchs. Aufgrund der homogen verteilten Stoffkonzentrationen des gelösten organischen und anorganischen Kohlenstoffs am unteren Rand waren Kohlenstoffausträge maßgeblich von den Wasserflüssen abhängig. Als Grundlage der Lysimeter-basierten Wasserhaushaltsanalyse diente ein im Rahmen dieser Dissertation entwickeltes Auswertungsverfahren von kontinuierlichen Gewichtsänderungen unter Berücksichtigung der zeitlichen Autokorrelation. Um eine mögliche Periodizität in zeitlich hochaufgelösten Änderungen des Lysimeterwaagensystems zu ermitteln, fand eine Autokorrelationsfunktion in der Zeitreihenanalyse von vier saisonalen Messzeiträumen Anwendung. Die Ergebnisse der Arbeit deuten darauf hin, dass hochaufgelöste Lysimeterzeitreihen in einem Bereich von circa 30 min bis circa 60 min zeitlich autokorreliert sind. Die ermittelten Autokorrelationslängen bieten wiederum eine Möglichkeit zur Annäherung von (optimalen) Zeitintervallen für die Niederschlagsberechnung, basierend auf Änderungen in den Wiegedaten. Im Vergleich zu einem Kippwaagenregenmesser nahe der Lysimeterstation überstiegen die ermittelten Niederschlagsmengen der Lysimeter in Bodennähe die der in zwei Metern Höhe erfolgten Messung deutlich. Zur Charakterisierung der zeitlichen (Hysterese), als auch räumlichen (erosionsbedingter Pedogenese) Veränderungen der bodenhydraulischen Eigenschaften der Lysimeterböden wurden kontinuierliche Datenreihen des Wassergehaltes und Matrixpotentials analysiert. Die daraus abgeleiteten Wasserretentionskurven wurden in 3 Messtiefen (10, 30, 50 cm) unter Feldbedingungen ausgewertet und mit Labormessungen von Bodenkernen verglichen. Sowohl zwischen den unterschiedlich erodierten Bodenprofilen als auch zwischen den Feld- und Labormessungen waren Unterschiede in den Wasserretentionseigenschaften ersichtlich. Innerhalb eines Jahres (eingeschränkte Benetzbarkeit) sowie zwischen den Jahren (Veränderung der Porenmatrix) zeigten die Ergebnisse zudem eine zeitliche Veränderung der Wasserretentionseigenschaften. Diese dynamische Variabilität der Wasserretention wiederum unterliegt der räumlichen Heterogenität von Bodeneigenschaften, wie Textur und Lagerungsdichte. Für die Interpretation der unterschiedlichen bodenhydraulischen Eigenschaften sowie im Hinblick auf Veränderungen im Wasserhaushalt von ackerbaulich genutzten Lysimetern spielt das System Boden-Pflanze eine bedeutende Rolle. Diesbezüglich wurden Biomasse- und Wurzeluntersuchungen an unterschiedlich erodierten Böden durchgeführt. Die erzielten Ergebnisse verdeutlichen, dass erosionsbedingte Veränderungen im Profilaufbau beziehungsweise Horizonteigenschaften die Wurzelentwicklung beeinflussen können. Zudem stehen die Durchwurzelungsraten an grundwasserbeeinflussten Senkenstandorten in enger Beziehung zum Grundwasserstand (insbesondere im Frühjahr). Die oberirdisch beobachteten Unterschiede in der Biomasse korrelierten stark mit den ermittelten Wurzeldichten (Winterweizen), dies lässt vermuten, dass eine Abschätzung der Wurzelentwicklung mittels oberirdischer Biomasse möglich ist. Zusammenfassend zeigen die Ergebnisse der vorliegenden Lysimeterstudie komplexe Wechselwirkungen zwischen dem pedogenetischen Zustand erodierter Böden und dem Wasserhaushalt, den bodenhydraulischen Eigenschaften sowie der Wurzelentwicklung angebauter Kulturen. Zudem leisten die ermittelten unterschiedlichen Austragsraten an gelöstem Kohlenstoff einen Beitrag zur Abschätzung der langfristigen, in die Tiefe fortschreitenden Entkalkung sowie zur Beantwortung der Fragestellung, ob ackerbaulich genutzte Böden eher als Quell- oder als Senkenterm für Kohlendioxid fungieren. KW - Lysimeter KW - Wasserhaushalt KW - Kohlenstoff KW - lysimeter KW - water balance KW - carbon Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408561 ER - TY - THES A1 - Frank-Fahle, Béatrice A. T1 - Methane-cycling microbial communities in permafrost affected soils on Herschel Island and the Yukon Coast, Western Canadian Arctic T1 - Mikrobielle Gemeinschaften des Methankreislaufs in Permafrost beeinflussten Böden auf der Insel Herschel und an der Yukon-Küste, westliche kanadische Arktis N2 - Permafrost-affected ecosystems including peat wetlands are among the most obvious regions in which current microbial controls on organic matter decomposition are likely to change as a result of global warming. Wet tundra ecosystems in particular are ideal sites for increased methane production because of the waterlogged, anoxic conditions that prevail in seasonally increasing thawed layers. The following doctoral research project focused on investigating the abundance and distribution of the methane-cycling microbial communities in four different polygons on Herschel Island and the Yukon Coast. Despite the relevance of the Canadian Western Arctic in the global methane budget, the permafrost microbial communities there have thus far remained insufficiently characterized. Through the study of methanogenic and methanotrophic microbial communities involved in the decomposition of permafrost organic matter and their potential reaction to rising environmental temperatures, the overarching goal of the ensuing thesis is to fill the current gap in understanding the fate of the organic carbon currently stored in Artic environments and its implications regarding the methane cycle in permafrost environments. To attain this goal, a multiproxy approach including community fingerprinting analysis, cloning, quantitative PCR and next generation sequencing was used to describe the bacterial and archaeal community present in the active layer of four polygons and to scrutinize the diversity and distribution of methane-cycling microorganisms at different depths. These methods were combined with soil properties analyses in order to identify the main physico-chemical variables shaping these communities. In addition a climate warming simulation experiment was carried-out on intact active layer cores retrieved from Herschel Island in order to investigate the changes in the methane-cycling communities associated with an increase in soil temperature and to help better predict future methane-fluxes from polygonal wet tundra environments in the context of climate change. Results showed that the microbial community found in the water-saturated and carbon-rich polygons on Herschel Island and the Yukon Coast was diverse and showed a similar distribution with depth in all four polygons sampled. Specifically, the methanogenic community identified resembled the communities found in other similar Arctic study sites and showed comparable potential methane production rates, whereas the methane oxidizing bacterial community differed from what has been found so far, being dominated by type-II rather than type-I methanotrophs. After being subjected to strong increases in soil temperature, the active-layer microbial community demonstrated the ability to quickly adapt and as a result shifts in community composition could be observed. These results contribute to the understanding of carbon dynamics in Arctic permafrost regions and allow an assessment of the potential impact of climate change on methane-cycling microbial communities. This thesis constitutes the first in-depth study of methane-cycling communities in the Canadian Western Arctic, striving to advance our understanding of these communities in degrading permafrost environments by establishing an important new observatory in the Circum-Arctic. N2 - Permafrost beeinflusste Ökosysteme gehören zu den Regionen, in denen als Folge der globalen Erwärmung eine Veränderung des mikrobiell-kontrollierten Abbaus von organischem Material zu erwarten ist. Besonders in den Ökosystemen der feuchten Tundralandschaften kommt es zu einer verstärkten Methanpoduktion unter wassergesättigten und anoxischen Bedingungen, die durch immer tiefere saisonale Auftauschichten begünstigt werden. Die vorliegende Doktorarbeit kontenzentrierte sich auf die Untersuchung der Abundanz und Verteilung der am Methankreislauf beteiligten mikrobiellen Gemeinschaften in vier unterschiedlichen Polygonen auf der Insel Herschel und an der Yukon Küste in Kanada. Trotz des relevanten Beitrags der kanadischen West-Arktis am globalen Methanhaushalt, sind die dortigen mikrobiellen Gemeinschaften im Permafrost bisher nur unzureichend untersucht worden. Die zentrale Zielstellung der vorliegenden Arbeit besteht darin, die derzeitige Lücke im Verständnis der Kohlenstoffdynamik in der Arktis im Zuge von Klimaveränderungen und deren Bedeutung für den Methankreislauf in Permafrost-Ökosystemen zu schließen. Dies erfolgt durch Untersuchungen der am Abbau der organischen Substanz im Permafrost beteiligten methonogenen und methanothrophen mikrobiellen Gemeinschaften und ihrer möglichen Reaktionen auf steigende Umgebungstemperaturen. Um dieses Ziel zu erreichen, wurde ein Multiproxy-Ansatz gewählt, der die Analyse der Gemeinschaften mittels genetischen Fingerprintmethoden, Klonierung, quantitativer PCR und moderner Hochdurchsatzsequenzierung („Next Generation Sequencing“) beinhaltet, um die in der Auftauschicht der vier untersuchten Polygone vorhandenen Bakterien- und Archaeen-Gemeinschaften zu charakterisieren sowie die Diversität und Verteilung der am Methankreislauf beteiligten Mikroorganismen in unterschiedlicher Tiefe eingehend zu analysieren. Diese Studien wurden mit physikalisch-chemischen Habitatuntersuchungen kombiniert, da diese die mikrobiellen Lebensgemeinschaften maßgeblich beeinflussen. Zusätzlich wurde ein Laborexperiment zur Simulation der Klimaerwärmung an intakten Bodenmonolithen von der Insel Herschel durchgeführt, um die Veränderungen der am Methankreislauf beteiligten Gemeinschaften aufgrund steigender Bodentemperaturen zu untersuchen, sowie sicherere Voraussagen bezüglich der Methanfreisetzung in polygonalen Permafrostgebieten im Zusammenhang mit dem Klimawandel treffen zu können. KW - Permafrost KW - Mikrobiologie KW - Methan KW - Kohlenstoff KW - Arktis KW - Permafrost KW - microbiology KW - methane KW - carbon KW - Arctic Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-65345 ER - TY - THES A1 - Eren, Enis Oğuzhan T1 - Covalent anode materials for high-energy sodium-ion batteries T1 - Kovalente Anodenmaterialien für hoch-energetische Natrium-Ionen-Batterien N2 - The reliance on fossil fuels has resulted in an abnormal increase in the concentration of greenhouse gases, contributing to the global climate crisis. In response, a rapid transition to renewable energy sources has begun, particularly lithium-ion batteries, playing a crucial role in the green energy transformation. However, concerns regarding the availability and geopolitical implications of lithium have prompted the exploration of alternative rechargeable battery systems, such as sodium-ion batteries. Sodium is significantly abundant and more homogeneously distributed in the crust and seawater, making it easier and less expensive to extract than lithium. However, because of the mysterious nature of its components, sodium-ion batteries are not yet sufficiently advanced to take the place of lithium-ion batteries. Specifically, sodium exhibits a more metallic character and a larger ionic radius, resulting in a different ion storage mechanism utilized in lithium-ion batteries. Innovations in synthetic methods, post-treatments, and interface engineering clearly demonstrate the significance of developing high-performance carbonaceous anode materials for sodium-ion batteries. The objective of this dissertation is to present a systematic approach for fabricating efficient, high-performance, and sustainable carbonaceous anode materials for sodium-ion batteries. This will involve a comprehensive investigation of different chemical environments and post-modification techniques as well. This dissertation focuses on three main objectives. Firstly, it explores the significance of post-synthetic methods in designing interfaces. A conformal carbon nitride coating is deposited through chemical vapor deposition on a carbon electrode as an artificial solid-electrolyte interface layer, resulting in improved electrochemical performance. The interaction between the carbon nitride artificial interface and the carbon electrode enhances initial Coulombic efficiency, rate performance, and total capacity. Secondly, a novel process for preparing sulfur-rich carbon as a high-performing anode material for sodium-ion batteries is presented. The method involves using an oligo-3,4-ethylenedioxythiophene precursor for high sulfur content hard carbon anode to investigate the sulfur heteroatom effect on the electrochemical sodium storage mechanism. By optimizing the condensation temperature, a significant transformation in the materials’ nanostructure is achieved, leading to improved electrochemical performance. The use of in-operando small-angle X-ray scattering provides valuable insights into the interaction between micropores and sodium ions during the electrochemical processes. Lastly, the development of high-capacity hard carbon, derived from 5-hydroxymethyl furfural, is examined. This carbon material exhibits exceptional performance at both low and high current densities. Extensive electrochemical and physicochemical characterizations shed light on the sodium storage mechanism concerning the chemical environment, establishing the material’s stability and potential applications in sodium-ion batteries. N2 - Die Abhängigkeit von fossilen Brennstoffen hat zu einem abnormalen Anstieg von Treibhausgasen in der Atmosphäre geführt, was zur globalen Klimakrise beiträgt. Als Reaktion darauf hat eine rasche Umstellung auf erneuerbare Energiequellen begonnen, insbesondere Lithium-Ionen-Batterien, die eine entscheidende Rolle in der grünen Energiewende spielen. Bedenken hinsichtlich der Verfügbarkeit und geopolitischen Implikationen von Lithium haben jedoch die Erforschung alternativer wiederaufladbarer Batteriesysteme wie Natrium-Ionen-Batterien angeregt. Natrium ist in der Erdkruste und im Meerwasser deutlich häufiger und gleichmäßiger verteilt, was seine Extraktion im Vergleich zu Lithium einfacher und kostengünstiger macht. Aufgrund der geheimnisvollen Natur ihrer Komponenten sind Natrium-Ionen-Batterien derzeit noch nicht ausreichend fortgeschritten, um Lithium-Ionen-Batterien zu ersetzen. Insbesondere weist Natrium einen stärker metallischen Charakter und einen größeren Ionenradius auf, was zu einem anderen Ionen-Speichermechanismus führt, der in Lithium-Ionen-Batterien verwendet wird. Innovationen in synthetischen, post-synthetischen Methoden und Schnittstellentechnik zeigen deutlich die Bedeutung der Entwicklung hochleistungsfähiger kohlenstoffhaltiger Anodenmaterialien für Natrium-Ionen-Batterien auf. Das Ziel dieser Dissertation ist es, einen systematischen Ansatz zur Herstellung effizienter, leistungsstarker und nachhaltiger kohlenstoffhaltiger Anodenmaterialien für Natrium-Ionen-Batterien zu untersuchen. Diese Dissertation konzentriert sich auf drei Hauptziele. Erstens untersucht sie die Bedeutung von post-synthetischen Methoden bei der Gestaltung von Schnittstellen. Eine konforme Kohlenstoffnitrid-Beschichtung wird durch chemische Gasphasenabscheidung auf einer Kohlenstoffelektrode als künstliche Festelektrolytschnittstelle abgeschieden, was zu einer verbesserten elektrochemischen Leistung führt. Die Wechselwirkung zwischen der künstlichen Kohlenstoffnitrid-Schnittstelle und der Kohlenstoffelektrode trägt zu einer verbesserten anfänglichen kolumbischen Effizienz, Leistung bei hohen Raten und Gesamtkapazität bei. Zweitens wird ein neuartiger Prozess zur Herstellung von schwefelreichem Kohlenstoff als hochleistungsfähiges Anodenmaterial für Natrium-Ionen-Batterien vorgestellt. Die Methode verwendet einen Oligo-3,4-ethylendioxythiophen-Vorläufer für eine harte Kohlenstoffanode mit hohem Schwefelgehalt, um den Effekt des Schwefelheteroatoms auf den elektrochemischen Natriumspeichermechanismus zu untersuchen. Durch Optimierung der Kondensationstemperatur wird eine bedeutende Transformation in der Nanostruktur des Materials erreicht, was zu einer verbesserten elektrochemischen Leistung führt. Der Einsatz von in-operando-Röntgenkleinwinkelstreuung liefert wertvolle Erkenntnisse über die Wechselwirkung zwischen Mikroporen und Natriumionen während der elektrochemischen Prozesse. Letzendlich wird die Entwicklung einer hochkapazitiven harten Kohlenstoffanode, die aus 5-Hydroxymethylfurfural gewonnen wird, untersucht. Dieses Kohlenstoffmaterial zeigt eine außergewöhnliche Leistung sowohl bei niedrigen als auch bei hohen Stromdichten. KW - sodium-ion battery KW - sulfur KW - carbon KW - CN KW - anode KW - in-operando SAXS KW - Kohlenstoffnitrid (CN) KW - Anode KW - Kohlenstoff KW - in-operando SAXS KW - Natrium-Ionen-Batterie KW - Schwefel Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-622585 ER -