TY - JOUR A1 - von Websky, Karoline A1 - Hasan, Ahmed Abdallah Abdalrahman Mohamed A1 - Reichetzeder, Christoph A1 - Tsuprykov, Oleg A1 - Hocher, Berthold T1 - Impact of vitamin D on pregnancy-related disorders and on offspring outcome JF - The Journal of Steroid Biochemistry and Molecular Biology N2 - Observational studies from all over the world continue to find high prevalence rates of vitamin D insufficiency and deficiency in many populations, including pregnant women. Beyond its classical function as a regulator of calcium and phosphate metabolism, vitamin D elicits numerous effects in the human body. Current evidence highlights a vital role of vitamin D in mammalian gestation. During pregnancy, adaptations in maternal vitamin D metabolism lead to a physiologic increase of vitamin D levels, mainly because of an increased renal production, although other potential sources like the placenta are being discussed. A sufficient supply of mother and child with calcium and vitamin D during pregnancy ensures a healthy bone development of the fetus, whereas lack of either of these nutrients can lead to the development of rickets in the child. Moreover, vitamin D insufficiency during pregnancy has consistently been associated with adverse maternal and neonatal pregnancy outcomes. In multitudinous studies, low maternal vitamin D status was associated with a higher risk for pre-eclampsia, gestational diabetes mellitus and other gestational diseases. Likewise, several negative consequences for the fetus have been reported, including fetal growth restriction, increased risk of preterm birth and a changed susceptibility for later-life diseases. However, study results are diverging and causality has not been proven so far. Meta-analyses on the relationship between maternal vitamin D status and pregnancy outcomes revealed a wide heterogeneity of studied populations and the applied methodology in vitamin D assessment. Until today, clinical guidelines for supplementation cannot be based on high-quality evidence and it is not clear if the required intake for pregnant women differs from non-pregnant women. Long-term safety data of vitamin D supplementation in pregnant women has not been established and overdosing of vitamin D might have unfavorable effects, especially in mothers and newborns with mutations of genes involved in vitamin D metabolism. Reliable data from large observational and interventional randomized control trials are urgently needed as a basis for any detailed and safe recommendations for supplementation in the general population and, most importantly, in pregnant women. This is of utmost importance, as ensuring a sufficient vitamin D-supply of mother and child implies a great potential for the prevention of birth complications and development of diseases. KW - Vitamin D deficiency KW - Free vitamin D KW - Vitamin D binding protein KW - Epigenetics KW - DNA methylation KW - Single nucleotide polymorphism KW - Preeclampsia KW - Gestational diabetes mellitus KW - Small for gestational age KW - Long term health Y1 - 2018 U6 - https://doi.org/10.1016/j.jsbmb.2017.11.008 SN - 0960-0760 VL - 180 SP - 51 EP - 64 PB - Elsevier CY - Oxford ER - TY - THES A1 - Saussenthaler, Sophie T1 - The impact of DNA methylation on susceptibility to typ 2 diabetes in NZO mice N2 - The development of type 2 diabetes (T2D) is driven by genetic as well as life style factors. However, even genetically identical female NZO mice on a high-fat diet show a broad variation in T2D onset. The main objective of this study was to elucidate and investigate early epigenetic determinants of type 2 diabetes. Prior to other experiments, early fat content of the liver (<55.2 HU) in combination with blood glucose concentrations (>8.8 mM) were evaluated as best predictors of diabetes in NZO females. Then, DNA methylome and transcriptome were profiled to identify molecular pathophysiological changes in the liver before diabetes onset. The major finding of this thesis is that alterations in the hepatic DNA methylome precede diabetes onset. Of particular interest were 702 differentially methylated regions (DMRs), of which 506 DMRs had genic localization. These inter-individual DMRs were enriched by fivefold in the KEGG pathway type 2 diabetes mellitus, independent of the level of gene expression, demonstrating an epigenetic predisposition toward diabetes. Interestingly, among the list of hepatic DMRs, eleven DMRs were associated with known imprinted genes in the mouse genome. Thereby, six DMRs (Nap1l5, Mest, Plagl1, Gnas, Grb10 and Slc38a4) localized to imprinting control regions, including five iDMRs that exhibited hypermethylation in livers of diabetes-prone mice. This suggests that gain of DNA methylation in multiple loci of the paternal alleles has unfavourable metabolic consequences for the offspring. Further, the comparative liver transcriptome analysis demonstrated differences in expression levels of 1492 genes related to metabolically relevant pathways, such as citrate cycle and fatty acid metabolism. The integration of hepatic transcriptome and DNA methylome indicated that 449 differentially expressed genes were potentially regulated by DNA methylation, including genes implicated in insulin signaling. In addition, liver transcriptomic profiling of diabetes-resistant and diabetes-prone mice revealed a potential transcriptional dysregulation of 17 hepatokines, in particular Hamp. The hepatic expression of Hamp was decreased by 52% in diabetes-prone mice, on account of an increase in DNA methylation of promoter CpG-118. Hence, HAMP protein levels were lower in mice prone to develop diabetes, which correlated to higher liver triglyceride levels.. In sum, the identified DNA methylation changes appear to collectively favor the initiation and progression of diabetes in female NZO mice. In near future, epigenetic biomarkers are likely to contribute to improved diagnosis for T2D. KW - epigenetics KW - DNA methylation KW - RNAseq KW - fatty liver KW - type 2 diabetes KW - HAMP Y1 - 2021 ER - TY - JOUR A1 - Saussenthaler, Sophie A1 - Ouni, Meriem A1 - Baumeier, Christian A1 - Schwerbel, Kristin A1 - Gottmann, Pascal A1 - Christmann, Sabrina A1 - Laeger, Thomas A1 - Schürmann, Annette T1 - Epigenetic regulation of hepatic Dpp4 expression in response to dietary protein JF - The journal of nutritional biochemistry N2 - Dipeptidyl peptidase 4 (DPP4) is known to be elevated in metabolic disturbances such as obesity, type 2 diabetes and fatty liver disease. Lowering DPP4 concentration by pharmacological inhibition improves glucose homeostasis and exhibits beneficial effects to reduce hepatic fat content. As factors regulating the endogenous expression of Dpp4 are unknown, the aim of this study was to examine whether the Dpp4 expression is epigenetically regulated in response to dietary components. Primary hepatocytes were treated with different macronutrients, and Dpp4 mRNA levels and DPP4 activity were evaluated. Moreover, dietary low-protein intervention was conducted in New Zealand obese (NZO) mice, and subsequently, effects on Dpp4 expression, methylation as well as plasma concentration and activity were determined. Our results indicate that Dpp4 mRNA expression is mediated by DNA methylation in several tissues. We therefore consider the Dpp4 southern shore as tissue differentially methylated region. Amino acids increased Dpp4 expression in primary hepatocytes, whereas glucose and fatty acids were without effect. Dietary protein restriction in NZO mice increased Dpp4 DNA methylation in liver leading to diminished Dpp4 expression and consequently to lowered plasma DPP4 activity. We conclude that protein restriction in the adolescent and adult states is a sufficient strategy to reduce DPP4 which in turn contributes to improve glucose homeostasis. (C) 2018 Published by Elsevier Inc. KW - DPP4 KW - DNA methylation KW - Protein restriction KW - Type 2 diabetes KW - NZO Y1 - 2019 U6 - https://doi.org/10.1016/j.jnutbio.2018.09.025 SN - 0955-2863 SN - 1873-4847 VL - 63 SP - 109 EP - 116 PB - Elsevier CY - New York ER - TY - JOUR A1 - Putra, Sulistyo E. Dwi A1 - Reichetzeder, Christoph A1 - Meixner, Martin A1 - Liere, Karsten A1 - Slowinski, Torsten A1 - Hocher, Berthold T1 - DNA methylation of the glucocorticoid receptor gene promoter in the placenta is associated with blood pressure regulation in human pregnancy JF - Journal of hypertension N2 - Background: Blood pressure (BP) regulation during pregnancy is influenced by hormones of placental origin. It was shown that the glucocorticoid system is altered in hypertensive pregnancy disorders such as preeclampsia. Epigenetic mechanism might influence the activity of genes involved in placental hormone/hormone receptor synthesis/action during pregnancy. Method: In the current study, we analyzed the association of 50-C-phosphate-G-30 (CpG) site methylation of different glucocorticoid receptor gene (NR3C1) promoter regions with BP during pregnancy. The study was performed as a nested case-control study (n = 80) out of 1045 mother/ child pairs from the Berlin Birth Cohort. Placental DNA was extracted and bisulfite converted. Nested PCR products from six NR3C1 proximal promoter regions [glucocorticoid receptor gene promotor region B (GR-1B), C (GR-1C), D (GR-1D), E (GR-1E), F (GR-1F), and H (GR-1H)] were analyzed by next generation sequencing. Results: NR3C1 promoter regions GR-1D and GR-1E had a much higher degree of DNA methylation as compared to GR-1B, GR-1F or GR-1H when analyzing the entire study population. Comparison of placental NR3C1 CpG site methylation among hypotensive, normotensive and hypertensive mothers revealed several differently methylated CpG sites in the GR-1F promoter region only. Both hypertension and hypotension were associated with increased DNA methylation of GR-1F CpG sites. These associations were independent of confounding factors, such as family history of hypertension, smoking status before pregnancy and prepregnancy BMI. Assessment of placental glucocorticoid receptor expression by western blot showed that observed DNA methylation differences were not associated with altered levels of placental glucocorticoid receptor expression. However, correlation matrices of all NR3C1 proximal promoter regions demonstrated different correlation patterns of intraregional and interregional DNA methylation in the three BP groups, putatively indicating altered transcriptional control of glucocorticoid receptor isoforms. Conclusion: Our study provides evidence of an independent association between placental NR3C1 proximal promoter methylation and maternal BP. Furthermore, we observed different patterns of NR3C1 promoter methylation in normotensive, hypertensive and hypotensive pregnancy. KW - DNA methylation KW - epigenetics KW - glucocorticoid receptor KW - hypertension KW - hypotension KW - NR3C1 gene KW - placenta KW - pregnancy Y1 - 2017 U6 - https://doi.org/10.1097/HJH.0000000000001450 SN - 0263-6352 SN - 1473-5598 VL - 35 SP - 2276 EP - 2286 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Gerecke, Christian A1 - Scholtka, Bettina A1 - Loewenstein, Yvonne A1 - Fait, Isabel A1 - Gottschalk, Uwe A1 - Rogoll, Dorothee A1 - Melcher, Ralph A1 - Kleuser, Burkhard T1 - Hypermethylation of ITGA4, TFPI2 and VIMENTIN promoters is increased in inflamed colon tissue: putative risk markers for colitis-associated cancer JF - Journal of cancer research and clinical oncology : official organ of the Deutsche Krebsgesellschaft N2 - Epigenetic silencing of tumor suppressor genes is involved in early transforming events and has a high impact on colorectal carcinogenesis. Likewise, colon cancers that derive from chronically inflamed bowel diseases frequently exhibit epigenetic changes. But there is little data about epigenetic aberrations causing colorectal cancer in chronically inflamed tissue. The aim of the present study was to evaluate the aberrant gain of methylation in the gene promoters of VIM, TFPI2 and ITGA4 as putative early markers in the development from inflamed tissue via precancerous lesions toward colorectal cancer. Initial screening of different cancer cell lines by using methylation-specific PCR revealed a putative colon cancer-specific methylation pattern. Additionally, a demethylation assay was performed to investigate the methylation-dependent gene silencing of ITGA4. The candidate markers were analyzed in colonic tissue specimens from patients with colorectal cancer (n = 15), adenomas (n = 76), serrated lesions (n = 13), chronic inflammation (n = 10) and normal mucosal samples (n = 9). A high methylation frequency of VIM (55.6 %) was observed in normal colon tissue, whereas ITGA4 and TFPI2 were completely unmethylated in controls. A significant gain of methylation frequency with progression of disease as well as an age-dependent effect was detectable for TFPI2. ITGA4 methylation frequency was high in precancerous and cancerous tissues as well as in inflammatory bowel diseases (IBD). The already established methylation marker VIM does not permit a specific and sensitive discrimination of healthy and neoplastic tissue. The methylation markers ITGA4 and TFPI2 seem to be suitable risk markers for inflammation-associated colon cancer. KW - Epigenetic KW - DNA methylation KW - Colon cancer KW - Colitis KW - Gastrointestinal tract KW - Biomarker Y1 - 2015 U6 - https://doi.org/10.1007/s00432-015-1972-8 SN - 0171-5216 SN - 1432-1335 VL - 141 IS - 12 SP - 2097 EP - 2107 PB - Springer CY - New York ER -