TY - JOUR A1 - Regmi, Shakil A1 - Bookhagen, Bodo T1 - The spatial pattern of extreme precipitation from 40 years of gauge data in the central Himalaya JF - Weather and climate extremes N2 - The topography of the Himalaya exerts a substantial control on the spatial distribution of monsoonal rainfall, which is a vital water source for the regional economy and population. But the occurrence of short-lived and high-intensity precipitation results in socio-economic losses. This study relies on 40 years of daily data from 204 ground stations in Nepal to derive extreme precipitation thresholds, amounts, and days at the 95th percentile. We additionally determine the precipitation magnitude-frequency relation. We observe that extreme precipitation amounts follow an almost uniform band parallel to topographic contour lines in the southern Himalaya mountains in central and eastern Nepal but not in western Nepal. The relationship of extreme precipitation indices with topographic relief shows that extreme precipitation thresholds decrease with increasing elevation, but extreme precipitation days increase in higher elevation areas. Furthermore, stations above 1 km elevation exhibit a power-law relation in the rainfall magnitude-frequency framework. Stations at higher elevations generally have lower values of power-law exponents than low elevation areas. This suggests a fundamentally different behaviour of the rainfall distribution and an increased occurrence of extreme rainfall storms in the high elevation areas of Nepal. KW - Himalaya KW - Nepal KW - Indian summer monsoon KW - Precipitation KW - Extreme KW - precipitation Y1 - 2022 U6 - https://doi.org/10.1016/j.wace.2022.100470 SN - 2212-0947 VL - 37 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Köhn-Reich, Lisei A1 - Bürger, Gerd T1 - Dynamical prediction of Indian monsoon BT - past and present skill JF - International Journal of Climatology N2 - Ongoing development of dynamical atmosphere-ocean general circulation models keep expectations high regarding seasonal predictions of Indian monsoon rainfall. This study compares past and present skill of four currently operating forecasting systems, CFSv2 from NCEP, ENSEMBLES, System 4 and the newest SEAS5 from ECMWF, by analysing correlations of respective hindcasts with observed all-India summer rainfall. For the common time period 1982-2005, only ENSEMBLES and CFSv2 give significantly skilful forecasts. It is shown that skill is highly dependent on the chosen time period. Especially the intense El Nino of 1997 seems to degrade the predictions, most notably for SEAS4 and SEAS5 which seem to be linked to El Nino too strongly. We show that by discarding that year, a regime shift in the 1990s is no longer visible. Overall, we observe a convergence of skill towards the present with correlations of about 0.4 for CFSv2 and of 0.6 for System 4 and SEAS5. KW - correlation skill KW - dynamical seasonal prediction KW - Indian summer monsoon Y1 - 2019 U6 - https://doi.org/10.1002/joc.6039 SN - 0899-8418 SN - 1097-0088 VL - 39 IS - 8 SP - 3574 EP - 3581 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Mishra, Praveen Kumar A1 - Prasad, Sushma A1 - Anoop, A. A1 - Plessen, Birgit A1 - Jehangir, Arshid A1 - Gaye, Birgit A1 - Menzel, Philip A1 - Weise, Stephan M. A1 - Yousuf, Abdul R. T1 - Carbonate isotopes from high altitude Tso Moriri Lake (NW Himalayas) provide clues to late glacial and Holocene moisture source and atmospheric circulation changes JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - High resolution isotopic (delta O-18 and delta C-13) investigations on endogenic carbonates (calcite/aragonite) from Tso Moriri Lake, NW Himalaya show dramatic fluctuations during the late glacial and the early Holocene, and a persistent enrichment trend during the late Holocene. Changes in this lake are largely governed by the [input (meltwater + monsoon precipitation)/evaporationj (WE) ratio, also reflected in changes in the carbonate mineralogy with aragonite being formed during periods of lowest I/E. Using new isotopic data on endogenic carbonates in combination with the available data on geochemistry, mineralogy, and reconstructed mean annual precipitation, we demonstrate that the late glacial and early Holocene carbonate delta O-18 variability resulted from fluctuating Indian summer monsoon (ISM) precipitation in NW Himalaya. This region experienced increasing ISM precipitation between ca. 13.1 and 11.7 cal ka and highest ISM precipitation during the early Holocene (11.2-8.5 cal ka). However, during the late Holocene, evaporation was the dominant control on the carbonate delta O-18. Regional comparison of reconstructed hydrological changes from Tso Moriri Lake with other archives from the Asian summer monsoon and westerlies domain shows that the intensified westerly influence that resulted in higher lake levels (after 8 cal ka) in central Asia was not strongly felt in NW Himalaya. (C) 2015 Elsevier B.V. All rights reserved. KW - Carbonates KW - Holocene KW - Indian summer monsoon KW - Isotopes KW - Tso Moriri Lake Y1 - 2015 U6 - https://doi.org/10.1016/j.palaeo.2015.02.031 SN - 0031-0182 SN - 1872-616X VL - 425 SP - 76 EP - 83 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mishra, Praveen Kumar A1 - Anoop, Ambili A1 - Schettler, Georg A1 - Prasad, Sushma A1 - Jehangir, Arshid A1 - Menzel, Peter A1 - Naumann, Rudolf A1 - Yousuf, A. R. A1 - Basavaiah, Nathani A1 - Deenadayalan, Kannan A1 - Wiesner, Martin G. A1 - Gaye, Birgit T1 - Reconstructed late Quaternary hydrological changes from Lake Tso Moriri, NW Himalaya JF - Quaternary international : the journal of the International Union for Quaternary Research N2 - We present the results of our investigations on the radiocarbon dated core sediments from the Lake Tso Moriri, NW Himalaya aimed at reconstructing palaeohydrological changes in this climatically sensitive region. Based on the detailed geochemical, mineralogical and sedimentological analysis, we recognise several short-term fluctuations superimposed upon seven major palaeohydrological stages identified in this lake since similar to 26 cal ka. Stage I (>20.2 cal ka): shallow lake characterised by input of coarse-grained detrital sediments; Stage II (20.2-16.4 cal ka): lake deepening and intensification of this trend ca. 18 cal ka; Stage III (16.4-11.2 cal ka): rising lake levels with a short term wet phase (13.1-11.7 cal ka); Stage IV (11.2-8.5 cal ka): early Holocene hydrological maxima and highest lake levels inferred to have resulted from early Holocene Indian monsoon intensification, as records from central Asia indicate weaker westerlies during this interval; Stage V (8.5-5.5 cal ka): mid-Holocene climate deterioration; Stage VI (5.5-2.7 cal ka): progressive lowering of lake level; Stage VII (2.7-0 cal ka): onset of modern conditions. The reconstructed hydrological variability in Lake Tso Moriri is governed by temperature changes (meltwater inflow) and monsoon precipitation (increased runoff). A regional comparison shows considerable differences with other palaeorecords from peninsular India during late Holocene. (C) 2014 Elsevier Ltd and INQUA. All rights reserved. KW - Authigenic carbonates KW - Holocene KW - Indian summer monsoon KW - Lake sediments KW - Tso Moriri Lake KW - Westerlies Y1 - 2015 U6 - https://doi.org/10.1016/j.quaint.2014.11.040 SN - 1040-6182 SN - 1873-4553 VL - 371 SP - 76 EP - 86 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Prasad, Sushma A1 - Anoop, A. A1 - Riedel, N. A1 - Sarkar, Saswati A1 - Menzel, P. A1 - Basavaiah, Nathani A1 - Krishnan, R. A1 - Fuller, D. A1 - Plessen, Birgit A1 - Gaye, B. A1 - Roehl, U. A1 - Wilkes, H. A1 - Sachse, Dirk A1 - Sawant, R. A1 - Wiesner, M. G. A1 - Stebich, M. T1 - Prolonged monsoon droughts and links to Indo-Pacific warm pool: A Holocene record from Lonar Lake, central India JF - Earth & planetary science letters N2 - Concerns about the regional impact of global climate change in a warming scenario have highlighted the gaps in our understanding of the Indian Summer Monsoon (ISM, also referred to as the Indian Ocean summer monsoon) and the absence of long term palaeoclimate data from the central Indian core monsoon zone (CMZ). Here we present the first high resolution, well-dated, multiproxy reconstruction of Holocene palaeoclimate from a 10 m long sediment core raised from the Lonar Lake in central India. We show that while the early Holocene onset of-intensified monsoon in the CMZ is similar to that reported from other ISM records, the Lonar data shows two prolonged droughts (PD, multidecadal to centennial periods of weaker monsoon) between 4.6-3.9 and 2-0.6 cal ka. A comparison of our record with available data from other ISM influenced sites shows that the impact of these PD was observed in varying degrees throughout the ISM realm and coincides with intervals of higher solar irradiance. We demonstrate that (i) the regional warming in the Indo-Pacific Warm Pool (IPWP) plays an important role in causing ISM PD through changes in meridional overturning circulation and position of the anomalous Walker cell; (ii) the long term influence of conditions like El Nino-Southern Oscillation (ENSO) on the ISM began only ca. 2 cal ka BP and is coincident with the warming of the southern IPWP; (iii) the first settlements in central India coincided with the onset of the first PD and agricultural populations flourished between the two PD, highlighting the significance of natural climate variability and PD as major environmental factors affecting human settlements. KW - Indian summer monsoon KW - ENSO KW - prolonged droughts KW - Holocene KW - Lonar Lake Y1 - 2014 U6 - https://doi.org/10.1016/j.epsl.2014.01.043 SN - 0012-821X SN - 1385-013X VL - 391 SP - 171 EP - 182 PB - Elsevier CY - Amsterdam ER -