TY - JOUR A1 - Reim, Tina A1 - Scheiner, Ricarda T1 - Division of labour in honey bees: age- and task-related changes in the expression of octopamine receptor genes JF - Insect molecular biology N2 - The honey bee (Apis melliferaL.) has developed into an important ethological model organism for social behaviour and behavioural plasticity. Bees perform a complex age-dependent division of labour with the most pronounced behavioural differences occurring between in-hive bees and foragers. Whereas nurse bees, for example, stay inside the hive and provide the larvae with food, foragers leave the hive to collect pollen and nectar for the entire colony. The biogenic amine octopamine appears to play a major role in division of labour but the molecular mechanisms involved are unknown. We here investigated the role of two characterized octopamine receptors in honey bee division of labour. AmOctR1 codes for a Ca2+-linked octopamine receptor. AmOctR3/4 codes for a cyclic adenosine monophosphate-coupled octopamine receptor. Messenger RNA expression of AmOctR1 in different brain neuropils correlates with social task, whereas expression of AmOctR3/4 changes with age rather than with social role per se. Our results for the first time link the regulatory role of octopamine in division of labour to specific receptors and brain regions. They are an important step forward in our understanding of complex behavioural organization in social groups. KW - Apis mellifera KW - behavioural plasticity KW - G-protein coupled receptor KW - AmOctR1 KW - AmOctR3 KW - 4 Y1 - 2014 U6 - https://doi.org/10.1111/imb.12130 SN - 0962-1075 SN - 1365-2583 VL - 23 IS - 6 SP - 833 EP - 841 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - French, Alice S. A1 - Simcock, Kerry L. A1 - Rolke, Daniel A1 - Gartside, Sarah E. A1 - Blenau, Wolfgang A1 - Wright, Geraldine A. T1 - The role of serotonin in feeding and gut contractions in the honeybee JF - Journal of insect physiology KW - Honeybee KW - Apis mellifera KW - Serotonin KW - 5-HT KW - 5-HT receptor KW - Gut contractions Y1 - 2014 U6 - https://doi.org/10.1016/j.jinsphys.2013.12.005 SN - 0022-1910 SN - 1879-1611 VL - 61 SP - 8 EP - 15 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Becher, Matthias A. A1 - Grimm, Volker A1 - Thorbek, Pernille A1 - Horn, Juliane A1 - Kennedy, Peter J. A1 - Osborne, Juliet L. T1 - BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure JF - Journal of applied ecology : an official journal of the British Ecological Society N2 - BEEHAVE offers a valuable tool for researchers to design and focus field experiments, for regulators to explore the relative importance of stressors to devise management and policy advice and for beekeepers to understand and predict varroa dynamics and effects of management interventions. We expect that scientists and stakeholders will find a variety of applications for BEEHAVE, stimulating further model development and the possible inclusion of other stressors of potential importance to honeybee colony dynamics. KW - Apis mellifera KW - colony decline KW - cross-level interactions KW - feedbacks KW - foraging KW - modelling KW - multiple stressors KW - multi-agent simulation KW - predictive systems ecology KW - Varroa destructor Y1 - 2014 U6 - https://doi.org/10.1111/1365-2664.12222 SN - 0021-8901 SN - 1365-2664 VL - 51 IS - 2 SP - 470 EP - 482 PB - Wiley-Blackwell CY - Hoboken ER -