TY - JOUR A1 - Kleinpeter, Erich A1 - Seidl, Peter Rudolf T1 - The gamma- and the delta-effects in C-13 NMR spectroscopy in terms of nuclear chemical shielding (NCS) analysis N2 - Carbon-13 NMR is widely used in the determination of the stereochemistry of organic compounds. Changes in chemical shifts caused by interactions of groups that are close in space normally result in shielding of the carbon and deshielding of the hydrogen nuclei that are involved. This is not always the case, however, and further work on the origin of these effects would be desirable. Early applications of theoretical methods to the study of NMR shielding parameters were not particularly successful, but in recent years, the calculation of NMR shielding parameters by theoretical methods has developed into a useful and popular tool for structural studies by NMR. A promising approach to the problem of distinguishing and evaluating stereochemical influences on carbon and hydrogen chemical shifts is provided by natural chemical shielding (NCS) analysis. This method allows a partitioning of theoretical NMR shieldings into magnetic contributions from bonds and lone pairs of the molecule using the natural bond orbital (NBO) method. In order to investigate the origins of steric effects, we employed the NCS analysis to axial/equatorial-Me-cyclohexane, norbornane and exo/endo-Me-norbornane, in addition to n-pentane in the anti, gauche and g(P) g(M) conformations. Our results indicate that distortions in molecular structure due to steric effects can result in bond stretching or compression or in angular distortions. Changes in bond lengths result in the predictable shielding or deshielding of the nuclei that are involved. Where the molecular framework may be distorted to alleviate strain, chemical shifts appear to reflect changes in angles. Copyright (C) 2004 John Wiley Sons, Ltd Y1 - 2004 ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Klod, Sabrina A1 - Rudorf, Wolf-Dieter T1 - Electronic state of push-pull alkenes : an experimental dynamic NMR and theoretical ab initio MO study N2 - The H-1 and C-13 NMR spectra of a number of push-pull alkenes were recorded and the C-13 chemical shifts calculated employing the GIAO perturbation method. Of the various levels of theory tried, MP2 calculations with a triple- zeta-valence basis set were found to be the most effective for providing reliable results. The effect of the solvent was also considered but only by single-point calculations. Generally, the agreement between the experimental and theoretically calculated C-13 chemical shifts was good with only the carbons of the carbonyl, thiocarbonyl, and cyano groups deviating significantly. The substituents on the different sides of the central C=C partial double bond were classified qualitatively with respect to their donor (S,S < S,N < N,N) and acceptor properties (CdropN < C=O < C=S) and according to the ring size on the donor side (6 < 7 < 5). The geometries of both the ground (GS) and transition states (TS) of the restricted rotation about the central C=C partial double bond were also calculated at the HF and MP2 levels of theory and the free energy differences compared with the barriers to rotation determined experimentally by dynamic NMR spectroscopy. Structural differences between the various push-pull alkenes were reproduced well, but the barriers to rotation were generally overestimated theoretically. Nevertheless, by correlating the barriers to rotation and the length of the central C=C partial double bonds, the push-pull alkenes could be classified with respect to the amount of hydrogen bonding present, the extent of donor-acceptor interactions (the push-pull effect), and the level of steric hindrance within the molecules. Finally, by means of NBO analysis of a set of model push-pull alkenes (acceptors: - CdropN, -CH=O, and -CH=S; donors: S, O, and NH), the occupation numbers of the bonding pi orbitals of the central C=C partial double bond were shown to quantitatively describe the acceptor powers of the substituents and the corresponding occupation numbers of the antibonding pi* orbital the donor powers of the substituents. Thus, for the first time an estimation of both the acceptor and the donor properties of the substituents attached to the push-pull double bond have been separately quantified. Furthermore, both the balance between strong donor/weak acceptor substituents (and vice versa) and the additional influences on the barriers to rotation (hydrogen bonding and steric hindrance in the GSs and TSs) could be differentiated Y1 - 2004 ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Klod, Sabrina T1 - Ab initio calculation of the anisotropic/ring current effects of amino acid residues to locate the position of substrates in the binding site of enzymes N2 - The ring current effects of aromatic moieties and the anisotropic effects of the C=O and C-X (X = C, N, S) bonds and of the NH=C(NH2)-NH- moiety in the side chains of amino acid residues of proteins were ab initio calculated based on nuclear independent chemical shieldings as employed by P.v.R. Schleyer. Hereby, quantitative information about the spatial extension, sign and scope of the corresponding ring current/anisotropic effects was obtained and they were visualized as iso-chemical-shielding-surfaces. Examining this quantitative information compared with experimental NMR chemical shifts, the role of the corresponding amino acid residues in binding substrates in the binding site of enzymes was studied. (C) 2004 Elsevier B.V. All rights reserved Y1 - 2004 ER - TY - JOUR A1 - Holzberger, Anja A1 - Kleinpeter, Erich T1 - Solution structure of the palladium(II) complex of 1,4,7,10-tetrathiacyclododec-2-ene-2,3-dicarbonitrile N2 - The solution structure of the Pd(II) complex of mn-12-S-4 was studied in detail by NMR spectroscopy. The stoichiometry of the complex was determined by H-1 NMR titration experiments. (3)J(H,H) coupling constants were extracted from the 2D J-resolved NMR spectrum of the complex providing information concerning the S-C-C-S torsional angles. Further conclusions about the conformation of [Pd(mn-12-S-4)](BF4)(2) were drawn from experimental NOES. The results of the NMR study were corroborated by molecular modelling. Copyright (C) 2004 John Wiley Sons, Ltd Y1 - 2004 SN - 0749-1581 ER - TY - JOUR A1 - Holzberger, Anja A1 - Holdt, H. N. A1 - Kleinpeter, Erich T1 - NMR spectroscopic and molecular modelling study of the solution structure and the complexational behavior of maleonitrile tetrathia crown ethers with silver(I) N2 - The flexibility and complex formation of two maleonitrile tetrathia crown ethers were studied in solution using H-1 and C-13 NMR spectroscopy and molecular modelling. Both the stoichiometry and the stability of the complexes that these crown ethers form with Ag(I) were determined by NMR titration measurements. Spin-lattice relaxation time measurements provided information concerning the donor atoms involved in complex formation and also the intramolecular mobility of the free and complexed ligands. Molecular modelling was also used to gain further insight into the conformational space of the free ligands and their silver(I) complexes. Copyright (C) 2004 John Wiley Sons, Ltd Y1 - 2004 ER - TY - JOUR A1 - Holzberger, Anja A1 - Holdt, Hans-Jürgen A1 - Kleinpeter, Erich T1 - Conformational analysis of mixed oxathia crown ethers and their complexational ability towards Ag(I) and Pd(II) : an experimental solution NMR and theoretical molecular modelling study N2 - Both the conformation and flexibility of four mixed oxathia crown ethers and their Ag(I) and Pd(II) complexes were studied by H-1 NMR (delta, J, NOE, T-1), C-13 NMR, dynamic 1H NMR spectroscopy and molecular modelling. The stoichiometry and stability constants of the complexes were determined from corresponding Job's plots in the case of Ag(I) complexes as the interchange between free and complexed states was fast on the NMR timescale; interchange for the Pd(II) complexes was sufficiently slow such that distinct sub-spectra were observable for the free and complexed states. In all cases where complexation was observed, 1 : 1 complexes were formed. Global minima structures determined from the modelling studies were analysed with respect to the barriers to ring interconversion, the flexibility of the species in solution and the preferred complexation of Ag(I) and Pd(II) to the sulfur atoms of the crown ethers Y1 - 2004 SN - 1477-0520 ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Klod, Sabrina T1 - Separation of anisotropic and steric substituent effects - nuclear chemical shielding analysis of H-4 and C-4 in phenanthrene and 11-ethynylphenanthrene N2 - The anisotropic effect of a proximally introduced ethynyl group on the chemical shifts of H-4 and C-4 of the phenanthrene skeleton was calculated using GIAO-HF/NICS methodology. The anisotropic effect, long considered to be the source of the considerable downfield shift of H-4 in 11-ethynylphenanthrene in comparison to the chemical shift value of the corresponding proton in phenanthrene, was determined to be only negligible in magnitude on the basis of these calculations. Partitioning of the natural chemical shieldings of H-4 and C-4 by the NCS-NBO method into various contributions from the C-C and C-H bonds present in each molecule revealed that steric compression was able to account for the large downfield shifts of both H-4 and C-4 in 11-ethynylphenanthrene relative to phenanthrene. Thus, the substituent effect is almost totally permeated by this latter interaction and not by the aforementioned process, which was previously presumed to be the sole underlying cause Y1 - 2004 ER - TY - JOUR A1 - Heydenreich, Matthias A1 - Koch, Andreas A1 - Kovacs, J. A1 - Toth, G. A1 - Kleinpeter, Erich T1 - Electronic influences on (3)J(C,H) coupling constants via -S-, -S(O)- and -SO2--: their determination, calculation and comparison of detection methods N2 - (3)J(C,H) coupling constants via a sulfur atom in two series of compounds, both including a sulfide, a sulfoxide and a sulfone, were detected experimentally and calculated by quantum mechanical methods. In the first series (1-3) the coupling between a hydrogen, bonded to an Sp(3) carbon, and an Sp(2) carbon is treated; the second series (4- 6) deals with the coupling between a hydrogen, bonded to an Sp3 carbon, and an Sp3 carbon. Different pulse sequences (broadband HMBC, SelJres, 1D HSQMBC, J-HMBC-2, selective J-resolved long-range experiment and IMPEACH-MBC) proved to be useful in determining the long-range (3)J(C,H) coupling constants. However, the dynamic behaviour of two of the compounds (4 and 6) led to weighted averages of the two coupling constants expected (concerning equatorial and axial positions of the corresponding hydrogens). DFT calculations proved to be useful to calculate not only the (3)J(C,H) coupling constants but also the different contributions of FC, PSO, DSO and SD terms; the calculation of the Fermi contact term (FC) was found to be sufficient for the correct estimation of (3)J(C,H) coupling constants. Copyright (C) 2004 John Wiley Sons, Ltd Y1 - 2004 SN - 0749-1581 ER - TY - JOUR A1 - Heydenreich, Matthias A1 - Wolf, G. A1 - Woller, Jochen A1 - Kleinpeter, Erich T1 - Restricted rotation of the amino group and ring inversion in highly substituted anilines. A dynamic NMR and computational study N2 - The reaction of cyclic ylidene malononitriles with acetylene (di)carboxylic acid esters led to the production of nine bicyclic systems incorporating highly substituted (5/6) anilines. The free energy of activation (DeltaG(#)) for the restricted rotation about the aniline-NH2 bond was experimentally measured in each case and a correlation was evident between the increase in steric strain in the ground state, the electron withdrawing capabilities of the ring substituents, and a reduction in the rotational barrier. For four of the compounds, the slow ring interconversion (chairreversible arrowchair) for the annelated saturated seven-membered ring that formed part of the bicyclic system was also evident. In these four compounds, both dynamic processes were also studied theoretically using ab initio methods whilst the ring interconversion was additionally studied using molecular dynamic simulations. The interconversion between the two stable chair forms was deemed to occur via a conformation series consisting of chairreversible arrowboatreversible arrowtwist-boatreversible arrowboatreversible arrowchair. (C) 2004 Elsevier Ltd. All rights reserved Y1 - 2004 SN - 0040-4020 ER - TY - JOUR A1 - Koetz, Joachim A1 - Günther, Claudia A1 - Kosmella, Sabine A1 - Kleinpeter, Erich A1 - Wolf, Gunter T1 - Polyelectrolyte induced structural changes in the isotropic phase of the system sulfobetaine/pentanol/toluene/ water Y1 - 2004 ER - TY - JOUR A1 - Virta, P. A1 - Koch, Andreas A1 - Roslund, M. U. A1 - Mattjus, P. A1 - Kleinpeter, Erich A1 - Kronberg, L. A1 - Sjoholm, R. A1 - Klika, Karel D. T1 - Synthesis, characterisation and theoretical calculations of 2,6-diaminopurine etheno derivatives N2 - Four derivatives of 2,6-diaminopurine (1) were synthesised and characterised. When 1 was reacted with chloroacetaldehyde, 5-aminoimidazo[2,1- i] purine (2), 9-aminoimidazo[2,1-b]purine (3), 9-aminoimidazo[1,2- a]purine (4) and diimidazo[2,1-b: 2', 1'-i]purine (5) were formed. The purified products (3 - 5) were fully characterised by MS, complete NMR assignments as well as fluorescence and UV spectroscopy. The purified, isolated yields of these products ( 3 - 5) varied from 2.5 to 30%. The relative stability of different tautomers was investigated by theoretical calculations. Fluorescence characteristics are also discussed and compared to the starting material 1 and a reference molecule 2-aminopurine Y1 - 2005 SN - 1477-0520 ER - TY - JOUR A1 - Wolf, G. A1 - Kleinpeter, Erich T1 - Pulsed field gradient NMR study of anomalous diffusion in a lecithin-based microemulsion N2 - Self-diffusion measurements in microemulsion systems composed of a naturally occurring soybean lecithin mixture, an aqueous phase, either water or a 1% aqueous PDADMAC solution, and isooctane were accomplished by pulsed field gradient (PFG) (HNMR)-H-1 spectroscopy at oil dilution lines of low and intermediate water/lecithin ratios. The concentration-dependent diffusion data reveal water-in-oil (W/O) reverse micellar aggregates with dimensions on the nanometer scale being slightly smaller at low water content. With increasing micellar volume fractions, both hydrodynamic as well as direct interactions between particles significantly slow aggregate diffusion. The surfactant mean square displacements (msd's) in dilute and concentrated polymer-free systems studied as a function of diffusion time (20-1000 ms) are characterized by a crossover from Gaussian diffusion, due to slow aggregate motion, to anomalously enhanced diffusion, due to fast surface-bulk surfactant exchange at intermediate times revealing weak, barrier-controlled adsorption behavior. Upon addition of the polycation PDADMAC, the diffusion characteristics change to exclusively superdiffusive behavior with surfactant msd scaling with time as t(3/2) over the entire time range studied. This is caused by surfactant molecules performing Levy walks along the surface of reverse micelles mediated by the dilute bulk. The bulk-mediated surface diffusion is a consequence of the diffusion-controlled micelle-bulk exchange dynamics induced by interactions of PDADMAC with surfactant headgroups Y1 - 2005 SN - 0743-7463 ER - TY - JOUR A1 - Thomas, Steffen A1 - Kleinpeter, Erich T1 - A novel empirical approach for the structure elucidation of disilanes by empirical estimation of their Si-29 chemical shifts N2 - In C-13 NMR spectroscopy, there are many empirical methods for fast and exact computation of C-13 chemical shifts; comparable procedures for Si-29 NMR chemical shifts are not existing or are older than 20 years. On basis of the largest database of Si-29 chemical shifts available, along this paper a relatively simple procedure for the similarly exact calculation of the Si-29 chemical shifts of disilanes (average margin of error ca. 3.7 ppm) is given. (c) 2005 Elsevier B.V. All rights reserved Y1 - 2005 SN - 0022-2860 ER - TY - JOUR A1 - Taddei, F. A1 - Kleinpeter, Erich T1 - The anomeric effect in substituted cyclohexanes : II. The role of hyperconjugative interactions and steric effect in 1,4-disubstituted cyclohexanes N2 - The conformational equilibria of the cis/trans isomers of some 1,4-di-substituted cyclohexanes (X = OH, OMe, Me, OCOCH3, OCOC(CH3)(3), OCOCCl3, OCOCF3) were calculated at several levels of theory; the best correlation between calculated and experimentally available Delta G(0)s refers to the MP2/6-311 +G*//MP2/6-311G* results. In addition, the hyperconjugative effect of the substituents was studied with the NBO options included in the GAUSSIAN-98 package; a number of interactions between filled NBOs and antibonding orbitals could be considered as most representative for delocalization along the molecules studied. The effect of the substituents on the molecular geometry of the substituted cyclohexanesas well as the partitioning of both hyperconjugative and steric substituent effects on the present conformational equilibria is critically evaluated. Our model [E. Kleinpeter, F. Taddei, J. Mol. Struct. (THEOCHEM) 683 (2004) 29] for interpreting the relative stability of conformers of substituted cyclohexanes could be further verified and its reliability assessed. (c) 2005 Elsevier B.V. All rights reserved Y1 - 2005 SN - 0166-1280 ER - TY - JOUR A1 - Seidl, Peter Rudolf A1 - Carneiro, J. W. D. A1 - Tostes, J. G. R. A1 - Koch, Andreas A1 - Kleinpeter, Erich T1 - Interpretation of conformational effects on 2-endo-norborneol by natural chemical shielding analysis N2 - This paper represents an extension of our work on the H-1 and C-13 NMR chemical shifts of norbornane and 2-endo- norborneol. NCS-NBO analysis was employed to probe contributions of bond orbitals and orbitals of lone pairs to nuclear shielding in conformers of the alcohol generated by rotation of the C-O bond. Variations in H-1 and C-13 chemical shifts with the dihedral angle are discussed in terms of Lewis and non-Lewis partitioning and their respective importance is evaluated. In addition to hyperconjugation of the lone pair in a p orbital of oxygen that was previously reported, a sizable participation of the lone pair which is in an sp orbital is also observed and their combined effect dominates the carbon chemical shifts of the C-1-C-2-OH and C-3-C-2-OH fragments. Both lone pairs on oxygen also contribute to localized, though-space effects on nuclei in the vicinity, these effects answering for the largest deviations in hydrogen chemical shifts on rotation around the C-O bond. On the other hand, for conformers in which nonbonded repulsions lead to distortions in the molecular framework, variations in chemical shifts may be attributed to angular effects Y1 - 2005 SN - 1089-5639 ER - TY - JOUR A1 - Ryppa, C. A1 - Senge, Mathias O. A1 - Hatscher, S. S. A1 - Kleinpeter, Erich A1 - Wacker, Philipp A1 - Schilde, Uwe A1 - Wiehe, A. T1 - Synthesis of mono- and disubstituted porphyrins : A- and 5,10-A(2)-type systems N2 - General syntheses have been developed for meso-substituted porphyrins with one or two substituents in the 5,10- positions and no beta substituents. 5-Substituted porphyrins with only one meso substituent are easily prepared by an acid-catalyzed condensation of dipyrromethane, pyrrole-2-carbaldehyde. and an appropriate aldehyde using a "[2+1+1]" approach. Similarly, 5,10-disubstituted porphyrins are accessible by simple condensation of unsubstituted tripyrrane with pyrrole and various aldehydes using a "[3+1]" approach. The yields for these reactions are low to moderate and additional formation of either di- or mono-substituted porphyrins due to scrambling of the intermediates is observed. However, the reactions can be performed quite easily and the desired target compounds are easily removed due to large differences in solubility. A complementary and more selective synthesis involves the use of organolithium reagents for SNAr reactions. Reaction of in situ generated porphyrin (porphine) with 1.1-8 equivalents of RLi gave the monosubstituted porphyrins, while reaction with 3-6 equivalents of RLi gave the 5,10-disubstituted porphyrins in yields ranging from 43 to 90%. These hitherto almost inaccessible compounds complete the series of different homologues of A-, 5,15-A(2)-, 5,10-A(2)-, A(3)-, and A(4)-type porphyrin's and allow an investigation of the gradual influence of type, number, and regiochemical arrangement of substituents on the properties of meso-substituted porphyrins. They also present important starting materials for the synthesis of ABCD porphyrins and are potential synthons for supramolecular materials requiring specific substituent orientations Y1 - 2005 SN - 0947-6539 ER - TY - JOUR A1 - Neuvonen, Helmi A1 - Neuvonen, Kari A1 - Koch, Andreas A1 - Kleinpeter, Erich T1 - Ab initio study of the substituent effects on the relative stability of the E and Z conformers of phenyl esters : Stereoelectronic effects on the reactivity of the carbonyl group N2 - Equilibria between the Z (tau(1) = 0 degrees) and E (tau(1) = 180 degrees) conformers of p-substituted phenyl acetates 4 and trifluoroacetates 5 (X = OMe, Me, H, Cl, CN, NO2) were studied by ab initio calculations at the HF/6-31G* and MP2/6-31G* levels of theory. The preference for the Z conformer, Delta E(HF), was calculated to be 5.36 kcal mol(-1) and 7.50 kcal mot(-1) for phenyl acetate and phenyl trifluoroacetate (i.e., with X = H), respectively. The increasing electron-withdrawing ability of the phenyl substituent X increases the preference of the Z conformer. An excellent correlation with a negative slope was observed for both series between Delta E of the E-Z equilibrium and the Hammett sigma constant. By using an appropriate isodesmic reaction, it was shown that electron-withdrawing substituents decrease the stability of both conformers, but the effect is higher with the E conformer. Electron-withdrawing phenyl substituents decrease the delocalization of the lone pair of the ether oxygen to the C=O antibonding orbital (n(O) -> pi*(C=O)) in both the E and Z forms and in both series studied; this effect is higher in the E conformer than in the Z conformer. The n(O) -> pi*(C=O) electron donation has a minimum value with tau(1) = 90 degrees and a maximum value with tau(1) = 90 degrees (the Z conformer), the value with tau(1) = 180 degrees (the E conformer) being between these two values, obviously due to steric hindrance. The effects of the phenyl substituents on the reactivity of the esters studied are discussed in terms of molecular orbital interactions. ED/EW substituents adjust the availability of the pi*(C=O) antibonding orbital to interact with the lone pair orbital of the attacking nucleophile and therefore affect the reactivity: EW substituents increase and ED substituents decrease it. Excellent correlations were observed between the rate coefficients of nucleophilic acyl substitutions and pi*(C=O) occupancies of the ester series 4 and Y1 - 2005 SN - 1089-5639 ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Schulenburg, Anja A1 - Zug, Ines A1 - Hartmann, Horst T1 - The interplay of thio(seleno)amide/vinylogous thio(seleno)amide "Resonance" and the anisotropic effect of thiocarbonyl and selenocarbonyl functional groups N2 - [GRAPHICS] Amino-substituted thio(seleno)acrylamides 1-4 were synthesized and their H-1 and C-13 NMR spectra assigned. Both the NMR data and the results of theoretical calculations at the ab initio level of theory were employed to elucidate the adopted structures of the compounds in terms of E/Z isomerism and s-cis/s-trans configuration. In the case of the asymmetrically N(Me)Ph-substituted compounds, ab initio GIAO-calculated ring current effects of the N-phenyl group were applied to successfully determine the preferred conformer bias. The restricted rotations about the two C-N partial double bonds were studied by DNMR and the barriers to rotation (Delta G(c)(double dagger)) determined at the coalescence temperatures, and these were discussed with respect to the structural differences between the compounds. The barriers to rotation were also calculated at the ab initio level of theory where the best results (R-2 = 0.8746) were obtained only with inclusion of the solvent at the SCIPCMHF/6-31G* level of theory. The calculations also provided means of assessing structural influences which were not available due to inaccessible rotation barriers. By means of natural bond orbital (NBO) analysis of 1-4, the occupation numbers of nitrogen lone pairs and bonding/antibonding pi/pi* orbitals were shown to quantitatively describe thio(seleno)amide/vinylogous thio(seleno)amide "resonance". Finally, the thio(seleno)carbonyl anisotropic effect was quantitatively calculated by the GIRO method and visualized by isochemical shielding surfaces (ICSS). Only marginal differences between the two anisotropic effects were calculated and are therefore of questionable utility for previous and future applications with respect to stereochemical assignments Y1 - 2005 SN - 0022-3263 ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Schulenburg, A. T1 - Quantification of the push-pull effect in substituted alkenes N2 - The quotient of the occupation numbers of pi bonding and pi* antibonding orbitals of the central C=C partial double bond, pi*(C=C)/pi(C=C), proved to be a useful parameter to quantify the push-pull effect completely for the first time in substituted alkenes by examination of a comprehensive set of compounds. (c) 2005 Elsevier Ltd. All rights reserved Y1 - 2005 SN - 0040-4039 ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas A1 - Pihlaja, Kalevi T1 - Application of (1)J(C,H) coupling constants in conformational analysis N2 - Conformational equilibria for a number of methyl substituted 1,3-dioxanes 1, 1,3-oxathianes 2 and 1,3-dithianes 3 were calculated at the HF and DFT levels of theory. In addition to the chair conformers also the energetically adjacent twist conformers were considered and the positions of the corresponding conformational equilibria estimated. On the basis of the global energy minima of conformers, participating in the conformational equilibria, the 1J(C,Hax,equ) coupling constants were calculated using the GIAO method and compared with the experimental values obtained from C-13, H- 1 coupled C-13 NMR spectra. The Perlin effect, the influence of the solvent and the suitability of this NMR parameter for assigning the conformational equilibria present are critically discussed. (c) 2005 Elsevier Ltd. All rights reserved Y1 - 2005 SN - 0040-4020 ER -