TY - JOUR A1 - Kiemel, Katrin A1 - De Cahsan, Binia A1 - Paraskevopoulou, Sofia A1 - Weithoff, Guntram A1 - Tiedemann, Ralph T1 - Mitochondrial genomes of the freshwater monogonont rotifer Brachionus fernandoi and of two additional B. calyciflorus sensu stricto lineages from Germany and the USA (Rotifera, Brachionidae) JF - Mitochondrial DNA. Part B-Resources N2 - The Brachionus calyciflorus species complex was recently subdivided into four species, but genetic resources to resolve phylogenetic relationships within this complex are still lacking. We provide two complete mitochondrial (mt) genomes from B. calyciflorus sensu stricto (Germany, USA) and the mt coding sequences (cds) from a German B. fernandoi. Phylogenetic analysis placed our B. calyciflorus sensu stricto strains close to the published genomes of B. calyciflorus, forming the putative sister species to B. fernandoi. Global representatives of B. calyciflorus sensu stricto (i.e. Europe, USA, and China) are genetically closer related to each other than to B. fernandoi (average pairwise nucleotide diversity 0.079 intraspecific vs. 0.254 interspecific). KW - Mitogenome KW - cryptic species KW - Brachionus calyciflorus s KW - Brachionus KW - fernandoi KW - monogonont rotifer Y1 - 2022 U6 - https://doi.org/10.1080/23802359.2022.2060765 SN - 2380-2359 VL - 7 IS - 4 SP - 646 EP - 648 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Kiemel, Katrin A1 - Gurke, Marie A1 - Paraskevopoulou, Sofia A1 - Havenstein, Katja A1 - Weithoff, Guntram A1 - Tiedemann, Ralph T1 - Variation in heat shock protein 40 kDa relates to divergence in thermotolerance among cryptic rotifer species JF - Scientific reports N2 - Genetic divergence and the frequency of hybridization are central for defining species delimitations, especially among cryptic species where morphological differences are merely absent. Rotifers are known for their high cryptic diversity and therefore are ideal model organisms to investigate such patterns. Here, we used the recently resolved Brachionus calyciflorus species complex to investigate whether previously observed between species differences in thermotolerance and gene expression are also reflected in their genomic footprint. We identified a Heat Shock Protein gene (HSP 40 kDa) which exhibits cross species pronounced sequence variation. This gene exhibits species-specific fixed sites, alleles, and sites putatively under positive selection. These sites are located in protein binding regions involved in chaperoning and may therefore reflect adaptive diversification. By comparing three genetic markers (ITS, COI, HSP 40 kDa), we revealed hybridization events between the cryptic species. The low frequency of introgressive haplotypes/alleles suggest a tight, but not fully impermeable boundary between the cryptic species. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-27137-3 SN - 2045-2322 VL - 12 IS - 1 PB - Macmillan Publishers Limited CY - London ER - TY - JOUR A1 - Parry, Victor A1 - Schlägel, Ulrike E. A1 - Tiedemann, Ralph A1 - Weithoff, Guntram T1 - Behavioural responses of defended and undefended prey to their predator BT - a case study of rotifera JF - Biology : open access journal N2 - Many animals that have to cope with predation have evolved mechanisms to reduce their predation risk. One of these mechanisms is change in morphology, for example, the development of spines. These spines are induced, when mothers receive chemical signals of a predator (kairomones) and their daughters are then equipped with defensive spines. We studied the behaviour of a prey and its predator when the prey is either defended or undefended. We used common aquatic micro-invertebrates, the rotifers Brachionus calyciflorus (prey) and Asplanchna brightwellii (predator) as experimental animals. We found that undefended prey increased its swimming speed in the presence of the predator. The striking result was that the defended prey did not respond to the predator's presence. This suggests that defended prey has a different response behaviour to a predator than undefended conspecifics. Our study provides further insights into complex zooplankton predator-prey interactions. Predation is a strong species interaction causing severe harm or death to prey. Thus, prey species have evolved various defence strategies to minimize predation risk, which may be immediate (e.g., a change in behaviour) or transgenerational (morphological defence structures). We studied the behaviour of two strains of a rotiferan prey (Brachionus calyciflorus) that differ in their ability to develop morphological defences in response to their predator Asplanchna brightwellii. Using video analysis, we tested: (a) if two strains differ in their response to predator presence and predator cues when both are undefended; (b) whether defended individuals respond to live predators or their cues; and (c) if the morphological defence (large spines) per se has an effect on the swimming behaviour. We found a clear increase in swimming speed for both undefended strains in predator presence. However, the defended specimens responded neither to the predator presence nor to their cues, showing that they behave indifferently to their predator when they are defended. We did not detect an effect of the spines on the swimming behaviour. Our study demonstrates a complex plastic behaviour of the prey, not only in the presence of their predator, but also with respect to their defence status. KW - animal behaviour KW - transgenerational response KW - Brachionus calyciflorus KW - Asplanchna brightwellii KW - video analysis Y1 - 2022 U6 - https://doi.org/10.3390/biology11081217 SN - 2079-7737 VL - 11 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kiemel, Katrin A1 - Weithoff, Guntram A1 - Tiedemann, Ralph T1 - DNA metabarcoding reveals impact of local recruitment, dispersal, and hydroperiod on assembly of a zooplankton metacommunity JF - Molecular ecology N2 - Understanding the environmental impact on the assembly of local communities in relation to their spatial and temporal connectivity is still a challenge in metacommunity ecology. This study aims to unravel underlying metacommunity processes and environmental factors that result in observed zooplankton communities. Unlike most metacommunity studies, we jointly examine active and dormant zooplankton communities using a DNA metabarcoding approach to overcome limitations of morphological species identification. We applied two-fragment (COI and 18S) metabarcoding to monitor communities of 24 kettle holes over a two-year period to unravel (i) spatial and temporal connectivity of the communities, (ii) environmental factors influencing local communities, and (iii) dominant underlying metacommunity processes in this system. We found a strong separation of zooplankton communities from kettle holes of different hydroperiods (degree of permanency) throughout the season, while the community composition within single kettle holes did not differ between years. Species richness was primarily dependent on pH and permanency, while species diversity (Shannon Index) was influenced by kettle hole location. Community composition was impacted by kettle hole size and surrounding field crops. Environmental processes dominated temporal and spatial processes. Sediment communities showed a different composition compared to water samples but did not differ between ephemeral and permanent kettle holes. Our results suggest that communities are mainly structured by environmental filtering based on pH, kettle hole size, surrounding field crops, and permanency. Environmental filtering based on specific conditions in individual kettle holes seems to be the dominant process in community assembly in the studied zooplankton metacommunity. KW - bulk DNA KW - dispersal KW - DNA-metabarcoding KW - environmental filtering; KW - metacommunity KW - zooplankton Y1 - 2022 U6 - https://doi.org/10.1111/mec.16627 SN - 0962-1083 SN - 1365-294X VL - 32 IS - 23 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Kiemel, Katrin A1 - Gurke, Marie A1 - Paraskevopoulou, Sofia A1 - Havenstein, Katja A1 - Weithoff, Guntram A1 - Tiedemann, Ralph T1 - Variation in heat shock protein 40 kDa relates to divergence in thermotolerance among cryptic rotifer species T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Genetic divergence and the frequency of hybridization are central for defining species delimitations, especially among cryptic species where morphological differences are merely absent. Rotifers are known for their high cryptic diversity and therefore are ideal model organisms to investigate such patterns. Here, we used the recently resolved Brachionus calyciflorus species complex to investigate whether previously observed between species differences in thermotolerance and gene expression are also reflected in their genomic footprint. We identified a Heat Shock Protein gene (HSP 40 kDa) which exhibits cross species pronounced sequence variation. This gene exhibits species-specific fixed sites, alleles, and sites putatively under positive selection. These sites are located in protein binding regions involved in chaperoning and may therefore reflect adaptive diversification. By comparing three genetic markers (ITS, COI, HSP 40 kDa), we revealed hybridization events between the cryptic species. The low frequency of introgressive haplotypes/alleles suggest a tight, but not fully impermeable boundary between the cryptic species. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1305 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-578635 SN - 1866-8372 IS - 1305 ER - TY - JOUR A1 - Kiemel, Katrin A1 - Gurke, Marie A1 - Paraskevopoulou, Sofia A1 - Havenstein, Katja A1 - Weithoff, Guntram A1 - Tiedemann, Ralph T1 - Variation in heat shock protein 40 kDa relates to divergence in thermotolerance among cryptic rotifer species JF - Scientific Reports N2 - Genetic divergence and the frequency of hybridization are central for defining species delimitations, especially among cryptic species where morphological differences are merely absent. Rotifers are known for their high cryptic diversity and therefore are ideal model organisms to investigate such patterns. Here, we used the recently resolved Brachionus calyciflorus species complex to investigate whether previously observed between species differences in thermotolerance and gene expression are also reflected in their genomic footprint. We identified a Heat Shock Protein gene (HSP 40 kDa) which exhibits cross species pronounced sequence variation. This gene exhibits species-specific fixed sites, alleles, and sites putatively under positive selection. These sites are located in protein binding regions involved in chaperoning and may therefore reflect adaptive diversification. By comparing three genetic markers (ITS, COI, HSP 40 kDa), we revealed hybridization events between the cryptic species. The low frequency of introgressive haplotypes/alleles suggest a tight, but not fully impermeable boundary between the cryptic species. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-27137-3 SN - 2045-2322 VL - 12 PB - Springer Nature CY - London ER - TY - JOUR A1 - Drago, Claudia A1 - Pawlak, Julia A1 - Weithoff, Guntram T1 - Biogenic aggregation of small microplastics alters their ingestion by a common freshwater micro-invertebrate JF - Frontiers in Environmental Science N2 - In recent years, increasing concerns have been raised about the environmental risk of microplastics in freshwater ecosystems. Small microplastics enter the water either directly or accumulate through disintegration of larger plastic particles. These particles might then be ingested by filter-feeding zooplankton, such as rotifers. Particles released into the water may also interact with the biota through the formation of aggregates, which might alter the uptake by zooplankton. In this study, we tested for size-specific aggregation of polystyrene microspheres and their ingestion by a common freshwater rotifer Brachionus calyciflorus. The ingestion of three sizes of polystyrene microspheres (MS) 1-, 3-, and 6-mu m was investigated. Each MS size was tested in combination with three different treatments: MS as the sole food intake, MS in association with food algae and MS aggregated with biogenic matter. After 72 h incubation in pre-filtered natural river water, the majority of the 1-mu m spheres occurred as aggregates. The larger the particles, the higher the relative number of single particles and the larger the aggregates. All particles were ingested by the rotifer following a Type-II functional response. The presence of algae did not influence the ingestion of the MS for all three sizes. The biogenic aggregation of microspheres led to a significant size-dependent alteration in their ingestion. Rotifers ingested more microspheres (MS) when exposed to aggregated 1- and 3-mu m MS as compared to single spheres, whereas fewer aggregated 6-mu m spheres were ingested. This indicates that the small particles when aggregated were in an effective size range for Brachionus, while the aggregated larger spheres became too large to be efficiently ingested. These observations provide the first evidence of a size- and aggregation-dependent feeding interaction between microplastics and rotifers. Microplastics when aggregated with biogenic particles in a natural environment can rapidly change their size-dependent availability. The aggregation properties of microplastics should be taken into account when performing experiments mimicking the natural environment. KW - microplastics ingestion KW - Brachionus calyciflorus KW - aggregation KW - microplastics KW - polystyrene KW - functional response Y1 - 2020 U6 - https://doi.org/10.3389/fenvs.2020.574274 SN - 2296-665X VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Parry, Victor A1 - Schlägel, Ulrike E. A1 - Tiedemann, Ralph A1 - Weithoff, Guntram T1 - Behavioural Responses of Defended and Undefended Prey to Their Predator BT - A Case Study of Rotifera T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Predation is a strong species interaction causing severe harm or death to prey. Thus, prey species have evolved various defence strategies to minimize predation risk, which may be immediate (e.g., a change in behaviour) or transgenerational (morphological defence structures). We studied the behaviour of two strains of a rotiferan prey (Brachionus calyciflorus) that differ in their ability to develop morphological defences in response to their predator Asplanchna brightwellii. Using video analysis, we tested: (a) if two strains differ in their response to predator presence and predator cues when both are undefended; (b) whether defended individuals respond to live predators or their cues; and (c) if the morphological defence (large spines) per se has an effect on the swimming behaviour. We found a clear increase in swimming speed for both undefended strains in predator presence. However, the defended specimens responded neither to the predator presence nor to their cues, showing that they behave indifferently to their predator when they are defended. We did not detect an effect of the spines on the swimming behaviour. Our study demonstrates a complex plastic behaviour of the prey, not only in the presence of their predator, but also with respect to their defence status. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1302 KW - animal behaviour KW - transgenerational response KW - Brachionus calyciflorus KW - Asplanchna brightwellii KW - video analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577594 SN - 1866-8372 IS - 1302 ER - TY - JOUR A1 - Parry, Victor A1 - Schlägel, Ulrike E. A1 - Tiedemann, Ralph A1 - Weithoff, Guntram T1 - Behavioural Responses of Defended and Undefended Prey to Their Predator BT - A Case Study of Rotifera JF - Biology N2 - Predation is a strong species interaction causing severe harm or death to prey. Thus, prey species have evolved various defence strategies to minimize predation risk, which may be immediate (e.g., a change in behaviour) or transgenerational (morphological defence structures). We studied the behaviour of two strains of a rotiferan prey (Brachionus calyciflorus) that differ in their ability to develop morphological defences in response to their predator Asplanchna brightwellii. Using video analysis, we tested: (a) if two strains differ in their response to predator presence and predator cues when both are undefended; (b) whether defended individuals respond to live predators or their cues; and (c) if the morphological defence (large spines) per se has an effect on the swimming behaviour. We found a clear increase in swimming speed for both undefended strains in predator presence. However, the defended specimens responded neither to the predator presence nor to their cues, showing that they behave indifferently to their predator when they are defended. We did not detect an effect of the spines on the swimming behaviour. Our study demonstrates a complex plastic behaviour of the prey, not only in the presence of their predator, but also with respect to their defence status. KW - animal behaviour KW - transgenerational response KW - Brachionus calyciflorus KW - Asplanchna brightwellii KW - video analysis Y1 - 2022 U6 - https://doi.org/10.3390/biology11081217 SN - 2079-7737 VL - 11 IS - 8 PB - MDPI CY - Basel, Schweiz ER - TY - GEN A1 - Pawlak, Julia A1 - Noetzel, Dominique Christian A1 - Drago, Claudia A1 - Weithoff, Guntram T1 - Assessing the toxicity of polystyrene beads and silica particles on the microconsumer Brachionus calyciflorus at different timescales T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Environmental pollution by microplastics has become a severe problem in terrestrial and aquatic ecosystems and, according to actual prognoses, problems will further increase in the future. Therefore, assessing and quantifying the risk for the biota is crucial. Standardized short-term toxicological procedures as well as methods quantifying potential toxic effects over the whole life span of an animal are required. We studied the effect of the microplastic polystyrene on the survival and reproduction of a common freshwater invertebrate, the rotifer Brachionus calyciflorus, at different timescales. We used pristine polystyrene spheres of 1, 3, and 6 µm diameter and fed them to the animals together with food algae in different ratios ranging from 0 to 50% nonfood particles. As a particle control, we used silica to distinguish between a pure particle effect and a plastic effect. After 24 h, no toxic effect was found, neither with polystyrene nor with silica. After 96 h, a toxic effect was detectable for both particle types. The size of the particles played a negligible role. Studying the long-term effect by using life table experiments, we found a reduced reproduction when the animals were fed with 3 µm spheres together with similar-sized food algae. We conclude that the fitness reduction is mainly driven by the dilution of food by the nonfood particles rather than by a direct toxic effect. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1277 KW - microplastics KW - rotifer KW - freshwater KW - natural particle KW - toxicity KW - environmental pollution Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-569967 SN - 1866-8372 IS - 1277 SP - 1 EP - 11 ER - TY - JOUR A1 - Pawlak, Julia A1 - Noetzel, Dominique Christian A1 - Drago, Claudia A1 - Weithoff, Guntram T1 - Assessing the toxicity of polystyrene beads and silica particles on the microconsumer Brachionus calyciflorus at different timescales JF - Frontiers in Environmental Science N2 - Environmental pollution by microplastics has become a severe problem in terrestrial and aquatic ecosystems and, according to actual prognoses, problems will further increase in the future. Therefore, assessing and quantifying the risk for the biota is crucial. Standardized short-term toxicological procedures as well as methods quantifying potential toxic effects over the whole life span of an animal are required. We studied the effect of the microplastic polystyrene on the survival and reproduction of a common freshwater invertebrate, the rotifer Brachionus calyciflorus, at different timescales. We used pristine polystyrene spheres of 1, 3, and 6 µm diameter and fed them to the animals together with food algae in different ratios ranging from 0 to 50% nonfood particles. As a particle control, we used silica to distinguish between a pure particle effect and a plastic effect. After 24 h, no toxic effect was found, neither with polystyrene nor with silica. After 96 h, a toxic effect was detectable for both particle types. The size of the particles played a negligible role. Studying the long-term effect by using life table experiments, we found a reduced reproduction when the animals were fed with 3 µm spheres together with similar-sized food algae. We conclude that the fitness reduction is mainly driven by the dilution of food by the nonfood particles rather than by a direct toxic effect. KW - microplastics KW - rotifer KW - freshwater KW - natural particle KW - toxicity KW - environmental pollution Y1 - 2022 U6 - https://doi.org/10.3389/fenvs.2022.955425 SN - 2296-665X SP - 1 EP - 11 PB - Frontiers CY - Lausanne, Schweiz ER - TY - GEN A1 - Weithoff, Guntram A1 - Bell, Elanor Margaret T1 - Complex Trophic Interactions in an Acidophilic Microbial Community T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Extreme habitats often harbor specific communities that differ substantially from non-extreme habitats. In many cases, these communities are characterized by archaea, bacteria and protists, whereas the number of species of metazoa and higher plants is relatively low. In extremely acidic habitats, mostly prokaryotes and protists thrive, and only very few metazoa thrive, for example, rotifers. Since many studies have investigated the physiology and ecology of individual species, there is still a gap in research on direct, trophic interactions among extremophiles. To fill this gap, we experimentally studied the trophic interactions between a predatory protist (Actinophrys sol, Heliozoa) and its prey, the rotifers Elosa woralli and Cephalodella sp., the ciliate Urosomoida sp. and the mixotrophic protist Chlamydomonas acidophila (a green phytoflagellate, Chlorophyta). We found substantial predation pressure on all animal prey. High densities of Chlamydomonas acidophila reduced the predation impact on the rotifers by interfering with the feeding behaviour of A. sol. These trophic relations represent a natural case of intraguild predation, with Chlamydomonas acidophila being the common prey and the rotifers/ciliate and A. sol being the intraguild prey and predator, respectively. We further studied this intraguild predation along a resource gradient using Cephalodella sp. as the intraguild prey. The interactions among the three species led to an increase in relative rotifer abundance with increasing resource (Chlamydomonas) densities. By applying a series of laboratory experiments, we revealed the complexity of trophic interactions within a natural extremophilic community. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1276 KW - acid mine drainage KW - extremophiles KW - food web KW - heliozoa KW - intraguild predation KW - mining lakes KW - Rotifera Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-569945 SN - 1866-8372 SP - 1 EP - 10 ER - TY - JOUR A1 - Weithoff, Guntram A1 - Bell, Elanor Margaret T1 - Complex Trophic Interactions in an Acidophilic Microbial Community JF - Microorganisms N2 - Extreme habitats often harbor specific communities that differ substantially from non-extreme habitats. In many cases, these communities are characterized by archaea, bacteria and protists, whereas the number of species of metazoa and higher plants is relatively low. In extremely acidic habitats, mostly prokaryotes and protists thrive, and only very few metazoa thrive, for example, rotifers. Since many studies have investigated the physiology and ecology of individual species, there is still a gap in research on direct, trophic interactions among extremophiles. To fill this gap, we experimentally studied the trophic interactions between a predatory protist (Actinophrys sol, Heliozoa) and its prey, the rotifers Elosa woralli and Cephalodella sp., the ciliate Urosomoida sp. and the mixotrophic protist Chlamydomonas acidophila (a green phytoflagellate, Chlorophyta). We found substantial predation pressure on all animal prey. High densities of Chlamydomonas acidophila reduced the predation impact on the rotifers by interfering with the feeding behaviour of A. sol. These trophic relations represent a natural case of intraguild predation, with Chlamydomonas acidophila being the common prey and the rotifers/ciliate and A. sol being the intraguild prey and predator, respectively. We further studied this intraguild predation along a resource gradient using Cephalodella sp. as the intraguild prey. The interactions among the three species led to an increase in relative rotifer abundance with increasing resource (Chlamydomonas) densities. By applying a series of laboratory experiments, we revealed the complexity of trophic interactions within a natural extremophilic community. KW - acid mine drainage KW - extremophiles KW - food web KW - heliozoa KW - intraguild predation KW - mining lakes KW - Rotifera Y1 - 2022 U6 - https://doi.org/10.3390/microorganisms10071340 SN - 2076-2607 VL - 10 SP - 1 EP - 10 PB - MDPI CY - Basel, Schweiz ET - 7 ER - TY - JOUR A1 - Drago, Claudia A1 - Weithoff, Guntram T1 - Variable Fitness Response of Two Rotifer Species Exposed to Microplastics Particles BT - The Role of Food Quantity and Quality JF - Toxics N2 - Plastic pollution is an increasing environmental problem, but a comprehensive understanding of its effect in the environment is still missing. The wide variety of size, shape, and polymer composition of plastics impedes an adequate risk assessment. We investigated the effect of differently sized polystyrene beads (1-, 3-, 6-µm; PS) and polyamide fragments (5–25 µm, PA) and non-plastics items such as silica beads (3-µm, SiO2) on the population growth, reproduction (egg ratio), and survival of two common aquatic micro invertebrates: the rotifer species Brachionus calyciflorus and Brachionus fernandoi. The MPs were combined with food quantity, limiting and saturating food concentration, and with food of different quality. We found variable fitness responses with a significant effect of 3-µm PS on the population growth rate in both rotifer species with respect to food quantity. An interaction between the food quality and the MPs treatments was found in the reproduction of B. calyciflorus. PA and SiO2 beads had no effect on fitness response. This study provides further evidence of the indirect effect of MPs in planktonic rotifers and the importance of testing different environmental conditions that could influence the effect of MPs. KW - microplastics KW - population growth rate KW - polystyrene KW - polyamide KW - silica beads KW - fitness response KW - rotifers KW - Brachionus fernandoi KW - Brachionus calyciflorus KW - egg ratio Y1 - 2021 U6 - https://doi.org/10.3390/toxics9110305 SN - 2305-6304 VL - 9 IS - 11 PB - MDPI CY - Basel ER - TY - GEN A1 - Drago, Claudia A1 - Weithoff, Guntram T1 - Variable Fitness Response of Two Rotifer Species Exposed to Microplastics Particles BT - The Role of Food Quantity and Quality T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Plastic pollution is an increasing environmental problem, but a comprehensive understanding of its effect in the environment is still missing. The wide variety of size, shape, and polymer composition of plastics impedes an adequate risk assessment. We investigated the effect of differently sized polystyrene beads (1-, 3-, 6-µm; PS) and polyamide fragments (5–25 µm, PA) and non-plastics items such as silica beads (3-µm, SiO2) on the population growth, reproduction (egg ratio), and survival of two common aquatic micro invertebrates: the rotifer species Brachionus calyciflorus and Brachionus fernandoi. The MPs were combined with food quantity, limiting and saturating food concentration, and with food of different quality. We found variable fitness responses with a significant effect of 3-µm PS on the population growth rate in both rotifer species with respect to food quantity. An interaction between the food quality and the MPs treatments was found in the reproduction of B. calyciflorus. PA and SiO2 beads had no effect on fitness response. This study provides further evidence of the indirect effect of MPs in planktonic rotifers and the importance of testing different environmental conditions that could influence the effect of MPs. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1248 KW - microplastics KW - population growth rate KW - polystyrene KW - polyamide KW - silica beads KW - fitness response KW - rotifers KW - Brachionus fernandoi KW - Brachionus calyciflorus KW - egg ratio Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-552615 SN - 1866-8372 IS - 1248 ER - TY - JOUR A1 - Weithoff, Guntram A1 - Taube, Anne A1 - Bolius, Sarah T1 - The invasion success of the cyanobacterium Cylindrospermopsis raciborskii in experimental mesocosms BT - genetic identity, grazing loss, competition and biotic resistance JF - Aquatic Invasions N2 - The potentially toxic, invasive cyanobacterium Cylindrospermopsis raciborskii, originating from sub-tropical regions, has spread into temperate climate zones in almost all continents. Potential factors in its success are temperature, light and nutrient levels. Grazing losses through zooplankton have been measured in the laboratory but are typically not regarded as a factor in (failed) invasion success. In some potentially suitable lakes, C. raciborskii has never been found, although it is present in water bodies close by. Therefore, we tested the invasive potential of three different isolates introduced into natural plankton communities using laboratory mesocosm experiments under three grazing levels: ambient zooplankton densities, removal of large species using 100 mu m mesh and a ca. doubling of large species. Three C. raciborskii isolates originating from the same geographic region (North-East Germany) were added separately to the four replicates of each treatment and kept in semi-continuous cultures for 21 days. Two isolates disappeared from the mesocosms and were also not viable in filtered lake water indicating that the lake water itself or the switch from culture medium to lake water led to the decay of the inoculated C. raciborskii. Only one out of the three isolates persisted in the plankton communities at a rather low level and only in the treatment without larger zooplankton. This result demonstrates that under potentially suitable environmental conditions, top-down control from zooplankton might hamper the establishment of C. raciborskii. Non-metric multidimensional scaling showed distinct variation in resident phytoplankton communities between the different grazing levels, thus differential grazing impact shaped the resident community in different ways allowing C. raciborskii only to invade under competitive (= low grazing pressure) conditions. Furthermore, even after invasion failure, the temporary presence of C. raciborskii influenced the phytoplankton community. KW - alien species KW - Cyanobacteria KW - competitive resistance KW - consumptive resistance KW - herbivory KW - harmful algae KW - microbial invasion Y1 - 2017 U6 - https://doi.org/10.3391/ai.2017.12.3.07 SN - 1798-6540 SN - 1818-5487 VL - 12 SP - 333 EP - 341 PB - Regional Euro-Asian Biological Invasions centre-reabic CY - Helsinki ER - TY - JOUR A1 - Paraskevopoulou, Sofia A1 - Tiedemann, Ralph A1 - Weithoff, Guntram T1 - Differential response to heat stress among evolutionary lineages of an aquatic invertebrate species complex JF - Biology letters N2 - Under global warming scenarios, rising temperatures can constitute heat stress to which species may respond differentially. Within a described species, knowledge on cryptic diversity is of further relevance, as different lineages/cryptic species may respond differentially to environmental change. The Brachionus calyciflorus species complex (Rotifera), which was recently described using integrative taxonomy, is an essential component of aquatic ecosystems. Here, we tested the hypothesis that these (formerly cryptic) species differ in their heat tolerance. We assigned 47 clones with nuclear ITS1 (nuITS1) and mitochondrial COI (mtCOI) markers to evolutionary lineages, now named B. calyciflorus sensu stricto (s.s.) and B. fernandoi. We selected 15 representative clones and assessed their heat tolerance as a bi-dimensional phenotypic trait affected by both the intensity and duration of heat stress. We found two distinct groups, with B. calyciflorus s.s. clones having higher heat tolerance than the novel species B. fernandoi. This apparent temperature specialization among former cryptic species underscores the necessity of a sound species delimitation and assignment, when organismal responses to environmental changes are investigated. KW - Brachionus calyciflorus KW - critical thermal maximum KW - cryptic species KW - ecological speciation KW - rotifers KW - heat tolerance Y1 - 2018 U6 - https://doi.org/10.1098/rsbl.2018.0498 SN - 1744-9561 SN - 1744-957X VL - 14 IS - 11 PB - Royal Society CY - London ER - TY - JOUR A1 - Rosenbaum, Benjamin A1 - Raatz, Michael A1 - Weithoff, Guntram A1 - Fussmann, Gregor F. A1 - Gaedke, Ursula T1 - Estimating parameters from multiple time series of population dynamics using bayesian inference JF - Frontiers in ecology and evolution N2 - Empirical time series of interacting entities, e.g., species abundances, are highly useful to study ecological mechanisms. Mathematical models are valuable tools to further elucidate those mechanisms and underlying processes. However, obtaining an agreement between model predictions and experimental observations remains a demanding task. As models always abstract from reality one parameter often summarizes several properties. Parameter measurements are performed in additional experiments independent of the ones delivering the time series. Transferring these parameter values to different settings may result in incorrect parametrizations. On top of that, the properties of organisms and thus the respective parameter values may vary considerably. These issues limit the use of a priori model parametrizations. In this study, we present a method suited for a direct estimation of model parameters and their variability from experimental time series data. We combine numerical simulations of a continuous-time dynamical population model with Bayesian inference, using a hierarchical framework that allows for variability of individual parameters. The method is applied to a comprehensive set of time series from a laboratory predator-prey system that features both steady states and cyclic population dynamics. Our model predictions are able to reproduce both steady states and cyclic dynamics of the data. Additionally to the direct estimates of the parameter values, the Bayesian approach also provides their uncertainties. We found that fitting cyclic population dynamics, which contain more information on the process rates than steady states, yields more precise parameter estimates. We detected significant variability among parameters of different time series and identified the variation in the maximum growth rate of the prey as a source for the transition from steady states to cyclic dynamics. By lending more flexibility to the model, our approach facilitates parametrizations and shows more easily which patterns in time series can be explained also by simple models. Applying Bayesian inference and dynamical population models in conjunction may help to quantify the profound variability in organismal properties in nature. KW - Bayesian inference KW - chemostat experiments KW - ordinary differential equation KW - parameter estimation KW - population dynamics KW - predator prey KW - time series analysis KW - trait variability Y1 - 2019 U6 - https://doi.org/10.3389/fevo.2018.00234 SN - 2296-701X VL - 6 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Bolius, Sarah A1 - Wiedner, Claudia A1 - Weithoff, Guntram T1 - Low invasion success of an invasive cyanobacterium in a chlorophyte dominated lake JF - Scientific reports Y1 - 2019 SN - 2045-2322 VL - 9 PB - Macmillan Publishers Limited CY - London ER - TY - JOUR A1 - Heinze, Johannes A1 - Simons, Nadja K. A1 - Seibold, Sebastian A1 - Wacker, Alexander A1 - Weithoff, Guntram A1 - Gossner, Martin M. A1 - Prati, Daniel A1 - Bezemer, T. Martijn A1 - Joshi, Jasmin Radha T1 - The relative importance of plant-soil feedbacks for plant-species performance increases with decreasing intensity of herbivory JF - Oecologia N2 - Under natural conditions, aboveground herbivory and plant-soil feedbacks (PSFs) are omnipresent interactions strongly affecting individual plant performance. While recent research revealed that aboveground insect herbivory generally impacts the outcome of PSFs, no study tested to what extent the intensity of herbivory affects the outcome. This, however, is essential to estimate the contribution of PSFs to plant performance under natural conditions in the field. Here, we tested PSF effects both with and without exposure to aboveground herbivory for four common grass species in nine grasslands that formed a gradient of aboveground invertebrate herbivory. Without aboveground herbivores, PSFs for each of the four grass species were similar in each of the nine grasslands-both in direction and in magnitude. In the presence of herbivores, however, the PSFs differed from those measured under herbivory exclusion, and depended on the intensity of herbivory. At low levels of herbivory, PSFs were similar in the presence and absence of herbivores, but differed at high herbivory levels. While PSFs without herbivores remained similar along the gradient of herbivory intensity, increasing herbivory intensity mostly resulted in neutral PSFs in the presence of herbivores. This suggests that the relative importance of PSFs for plant-species performance in grassland communities decreases with increasing intensity of herbivory. Hence, PSFs might be more important for plant performance in ecosystems with low herbivore pressure than in ecosystems with large impacts of insect herbivores. KW - Plant-soil feedback KW - Herbivorous insects KW - Field conditions KW - Selective herbivory KW - Nutritional quality Y1 - 2019 U6 - https://doi.org/10.1007/s00442-019-04442-9 SN - 0029-8549 SN - 1432-1939 VL - 190 IS - 3 SP - 651 EP - 664 PB - Springer CY - New York ER -