TY - JOUR A1 - Creighton, Andrea L. A1 - Parsekian, Andrew D. A1 - Angelopoulos, Michael A1 - Jones, Benjamin M. A1 - Bondurant, A. A1 - Engram, M. A1 - Lenz, Josefine A1 - Overduin, Pier Paul A1 - Grosse, Guido A1 - Babcock, E. A1 - Arp, Christopher D. T1 - Transient Electromagnetic Surveys for the Determination of Talik Depth and Geometry Beneath Thermokarst Lakes JF - Journal of geophysical research : Solid earth N2 - Thermokarst lakes are prevalent in Arctic coastal lowland regions and sublake permafrost degradation and talik development contributes to greenhouse gas emissions by tapping the large permafrost carbon pool. Whereas lateral thermokarst lake expansion is readily apparent through remote sensing and shoreline measurements, sublake thawed sediment conditions and talik growth are difficult to measure. Here we combine transient electromagnetic surveys with thermal modeling, backed up by measured permafrost properties and radiocarbon ages, to reveal closed-talik geometry associated with a thermokarst lake in continuous permafrost. To improve access to talik geometry data, we conducted surveys along three transient electromagnetic transects perpendicular to lakeshores with different decadal-scale expansion rates of 0.16, 0.38, and 0.58m/year. We modeled thermal development of the talik using boundary conditions based on field data from the lake, surrounding permafrost and a borehole, independent of the transient electromagnetics. A talik depth of 91m was determined from analysis of the transient electromagnetic surveys. Using a lake initiation age of 1400years before present and available subsurface properties the results from thermal modeling of the lake center arrived at a best estimate talk depth of 80m, which is on the same order of magnitude as the results from the transient electromagnetic survey. Our approach has provided a noninvasive estimate of talik geometry suitable for comparable settings throughout circum-Arctic coastal lowland regions. KW - geophysics KW - permafrost KW - thermokarst KW - electromagnetic KW - lake Y1 - 2018 U6 - https://doi.org/10.1029/2018JB016121 SN - 2169-9313 SN - 2169-9356 VL - 123 IS - 11 SP - 9310 EP - 9323 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Nitze, Ingmar A1 - Grosse, Guido A1 - Jones, Benjamin M. A1 - Arp, Christopher D. A1 - Ulrich, Mathias A1 - Fedorov, Alexander A1 - Veremeeva, Alexandra T1 - Landsat-Based Trend Analysis of Lake Dynamics across Northern Permafrost Regions JF - Remote sensing N2 - Lakes are a ubiquitous landscape feature in northern permafrost regions. They have a strong impact on carbon, energy and water fluxes and can be quite responsive to climate change. The monitoring of lake change in northern high latitudes, at a sufficiently accurate spatial and temporal resolution, is crucial for understanding the underlying processes driving lake change. To date, lake change studies in permafrost regions were based on a variety of different sources, image acquisition periods and single snapshots, and localized analysis, which hinders the comparison of different regions. Here, we present a methodology based on machine-learning based classification of robust trends of multi-spectral indices of Landsat data (TM, ETM+, OLI) and object-based lake detection, to analyze and compare the individual, local and regional lake dynamics of four different study sites (Alaska North Slope, Western Alaska, Central Yakutia, Kolyma Lowland) in the northern permafrost zone from 1999 to 2014. Regional patterns of lake area change on the Alaska North Slope (-0.69%), Western Alaska (-2.82%), and Kolyma Lowland (-0.51%) largely include increases due to thermokarst lake expansion, but more dominant lake area losses due to catastrophic lake drainage events. In contrast, Central Yakutia showed a remarkable increase in lake area of 48.48%, likely resulting from warmer and wetter climate conditions over the latter half of the study period. Within all study regions, variability in lake dynamics was associated with differences in permafrost characteristics, landscape position (i.e., upland vs. lowland), and surface geology. With the global availability of Landsat data and a consistent methodology for processing the input data derived from robust trends of multi-spectral indices, we demonstrate a transferability, scalability and consistency of lake change analysis within the northern permafrost region. KW - lake dynamics KW - lake change KW - permafrost region KW - Landsat KW - Alaska KW - Siberia KW - thermokarst KW - trend analysis KW - machine-learning Y1 - 2017 U6 - https://doi.org/10.3390/rs9070640 SN - 2072-4292 VL - 9 PB - MDPI CY - Basel ER -