TY - GEN A1 - Bierbach, David A1 - Schulte, Matthias A1 - Herrmann, Nina A1 - Tobler, Michael A1 - Stadler, Stefan A1 - Jung, Christian T. A1 - Kunkel, Benjamin A1 - Riesch, Rüdiger A1 - Klaus, Sebastian A1 - Ziege, Madlen A1 - Indy, Jeane Rimber A1 - Arias-Rodriguez, Lenin A1 - Plath, Martin T1 - Predator-induced changes of female mating preferences BT - innate and experiential effects T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background In many species males face a higher predation risk than females because males display elaborate traits that evolved under sexual selection, which may attract not only females but also predators. Females are, therefore, predicted to avoid such conspicuous males under predation risk. The present study was designed to investigate predator-induced changes of female mating preferences in Atlantic mollies (Poecilia mexicana). Males of this species show a pronounced polymorphism in body size and coloration, and females prefer large, colorful males in the absence of predators. Results In dichotomous choice tests predator-naïve (lab-reared) females altered their initial preference for larger males in the presence of the cichlid Cichlasoma salvini, a natural predator of P. mexicana, and preferred small males instead. This effect was considerably weaker when females were confronted visually with the non-piscivorous cichlid Vieja bifasciata or the introduced non-piscivorous Nile tilapia (Oreochromis niloticus). In contrast, predator experienced (wild-caught) females did not respond to the same extent to the presence of a predator, most likely due to a learned ability to evaluate their predators' motivation to prey. Conclusions Our study highlights that (a) predatory fish can have a profound influence on the expression of mating preferences of their prey (thus potentially affecting the strength of sexual selection), and females may alter their mate choice behavior strategically to reduce their own exposure to predators. (b) Prey species can evolve visual predator recognition mechanisms and alter their mate choice only when a natural predator is present. (c) Finally, experiential effects can play an important role, and prey species may learn to evaluate the motivational state of their predators. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 984 KW - sexual selection KW - female choice KW - non-independent mate choice KW - predator recognition KW - Poecilia mexicana Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431099 SN - 1866-8372 IS - 984 ER - TY - GEN A1 - Eccard, Jana A1 - Dammhahn, Melanie A1 - Ylönen, Hannu T1 - The Bruce effect revisited BT - is pregnancy termination in female rodents an adaptation to ensure breeding success after male turnover in low densities? T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Pregnancy termination after encountering a strange male, the Bruce effect, is regarded as a counterstrategy of female mammals towards anticipated infanticide. While confirmed in caged rodent pairs, no verification for the Bruce effect existed from experimental field populations of small rodents. We suggest that the effect may be adaptive for breeding rodent females only under specific conditions related to populations with cyclically fluctuating densities. We investigated the occurrence of delay in birth date after experimental turnover of the breeding male under different population composition in bank voles (Myodes glareolus) in large outdoor enclosures: one-male–multiple-females (n = 6 populations/18 females), multiple-males–multiple-females (n = 15/45), and single-male–single-female (MF treatment, n = 74/74). Most delays were observed in the MF treatment after turnover. Parallel we showed in a laboratory experiment (n = 205 females) that overwintered and primiparous females, the most abundant cohort during population lows in the increase phase of cyclic rodent populations, were more likely to delay births after turnover of the male than year-born and multiparous females. Taken together, our results suggest that the Bruce effect may be an adaptive breeding strategy for rodent females in cyclic populations specifically at low densities in the increase phase, when isolated, overwintered animals associate in MF pairs. During population lows infanticide risk and inbreeding risk may then be higher than during population highs, while also the fitness value of a litter in an increasing population is higher. Therefore, the Bruce effect may be adaptive for females during annual population lows in the increase phases, even at the costs of delaying reproduction. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 734 KW - breeding strategies KW - dip test KW - infanticide KW - Myodes voles KW - sexual conflict KW - sexual selection Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432956 SN - 1866-8372 IS - 734 ER - TY - GEN A1 - Makowicz, Amber M. A1 - Tiedemann, Ralph A1 - Steele, Rachel N. A1 - Schlupp, Ingo T1 - Kin recognition in a clonal fish, Poecilia formosa T2 - PLoS ONE N2 - Relatedness strongly influences social behaviors in a wide variety of species. For most species, the highest typical degree of relatedness is between full siblings with 50% shared genes. However, this is poorly understood in species with unusually high relatedness between individuals: clonal organisms. Although there has been some investigation into clonal invertebrates and yeast, nothing is known about kin selection in clonal vertebrates. We show that a clonal fish, the Amazon molly (Poecilia formosa), can distinguish between different clonal lineages, associating with genetically identical, sister clones, and use multiple sensory modalities. Also, they scale their aggressive behaviors according to the relatedness to other females: they are more aggressive to non-related clones. Our results demonstrate that even in species with very small genetic differences between individuals, kin recognition can be adaptive. Their discriminatory abilities and regulation of costly behaviors provides a powerful example of natural selection in species with limited genetic diversity. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 431 KW - toxic hydrogen-sulfide KW - sexual selection KW - hybrid origin KW - discrimination KW - behavior KW - competition KW - aggression KW - cues KW - consequences KW - avoidance Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411329 ER - TY - JOUR A1 - Reinhard, Sandy A1 - Kupfer, Alexander T1 - Sexual dimorphism in a French population of the marbled newt, Triturus marmoratus (Urodela: Salamandridae) JF - Salamandra : German journal of herpetology N2 - Amphibians have developed a large set of life-history strategies and demonstrate an impressive diversity of reproductive patterns compared to other vertebrates. Various selection pressures impact on males and females and see them produce different degrees of sexual dimorphism in order to maximise their reproductive success. In an extended morphometric analysis that included 27 body-and head-related characters, we studied the pattern of sexual dimorphism of a French population of the marbled newt, Triturus marmoratus. We analysed the characters by employing GLM methods (ANCOVA) and found 16 of them to be dimorphic between the sexes. In general, females differ in head-body size, such as snout-vent length, but males rather in shape or body proportions (e.g., limb proportions). The various expressions of sexual size dimorphism among large-bodied marbled newts and allies demonstrate that more than one evolutionary model works simultaneously on different traits. KW - SSD KW - fecundity KW - sexual selection KW - salamanders KW - Triturus KW - morphometrics Y1 - 2015 SN - 0036-3375 VL - 51 IS - 2 SP - 121 EP - 128 PB - Deutsche Gesellschaft für Herpetologie und Terrarienkunde CY - Darmstadt ER -