TY - THES A1 - Borghi, Gian Luca T1 - Evolution and diversity of photosynthetic metabolism in C3, C3-C4 intermediate and C4 plants T1 - Evolution und Diversität des photosynthetischen Stoffwechsels in C3-, C3-C4-Intermediär- und C4-Pflanzen N2 - In C3 plants, CO2 diffuses into the leaf and is assimilated by the Calvin-Benson cycle in the mesophyll cells. It leaves Rubisco open to its side reaction with O2, resulting in a wasteful cycle known as photorespiration. A sharp fall in atmospheric CO2 levels about 30 million years ago have further increased the side reaction with O2. The pressure to reduce photorespiration led, in over 60 plant genera, to the evolution of a CO2-concentrating mechanism called C4 photosynthesis; in this mode, CO2 is initially incorporated into 4-carbon organic acids, which diffuse to the bundle sheath and are decarboxylated to provide CO2 to Rubisco. Some genera, like Flaveria, contain several species that represent different steps in this complex evolutionary process. However, the majority of terrestrial plant species did not evolve a CO2-concentrating mechanism and perform C3 photosynthesis. This thesis compares photosynthetic metabolism in several species with C3, C4 and intermediate modes of photosynthesis. Metabolite profiling and stable isotope labelling were performed to detect inter-specific differences changes in metabolite profile and, hence, how a pathway operates. The results obtained were subjected to integrative data analyses like hierarchical clustering and principal component analysis, and were deepened by correlation analyses to uncover specific metabolic features and reaction steps that were conserved or differed between species. The main findings are that Calvin-Benson cycle metabolite profiles differ between C3 and C4 species and between different C3 species, including a very different response to rising irradiance in Arabidopsis and rice. These findings confirm Calvin-Benson cycle operation diverged between C3 and C4 species and, most unexpectedly, even between different C3 species. Moreover, primary metabolic profiles supported the current C4 evolutionary model in the genus Flaveria and also provided new insights and opened up new questions. Metabolite profiles also point toward a progressive adjustment of the Calvin-Benson cycle during the evolution of C4 photosynthesis. Overall, this thesis point out the importance of a metabolite-centric approach to uncover underlying differences in species apparently sharing the same photosynthetic routes and as a valid method to investigate evolutionary transition between C3 and C4 photosynthesis. N2 - Bei C3-Pflanzen diffundiert CO2 in das Blatt und wird durch den Calvin-Benson-Zyklus in den Mesophyllzellen assimiliert. Dies lässt Rubisco für seine Nebenreaktion mit O2 offen, was zu einem verschwenderischen Kreislauf führt, der als Photorespiration bekannt ist. Ein starker Rückgang der atmosphärischen CO2-Konzentration vor etwa 30 Millionen Jahren hat die Nebenreaktion mit O2 weiter verstärkt. Der Druck, die Photorespiration zu reduzieren, hat in über 60 Pflanzengattungen zur Entwicklung eines CO2-Konzentrationsmechanismus namens C4-Photosynthese geführt. In diesem Mechanismus wird CO2 zunächst in organische C4-Kohlenstoffsäuren eingebaut, die zur Bündelscheide diffundieren und dort decarboxyliert werden, um CO2 für Rubisco bereitzustellen. Einige Gattungen, wie z.B. Flaveria, enthalten mehrere Arten, die verschiedene Schritte dieses komplexen Evolutionsprozesses darstellen. Die Mehrheit der terrestrischen Pflanzenarten hat jedoch keinen CO2-Konzentrationsmechanismus entwickelt und betreibt C3-Photosynthese. Diese Arbeit vergleicht den Photosynthese-Metabolismus in mehreren Spezies mit C3-, C4- und intermediären Arten der Photosynthese. Metaboliten-Profiling und stabile Isotopenmarkierung wurden durchgeführt, um interspezifische Unterschiede im Metabolitenprofil und damit die Funktionsweise der Stoffwechselwege zu erkennen. Die Ergebnisse wurden integrativen Datenanalysen wie hierarchischem Clustering und Hauptkomponentenanalyse unterzogen und durch Korrelationsanalysen vertieft, um spezifische metabolische Merkmale und Reaktionsschritte aufzudecken, die konserviert oder zwischen Spezies verschieden sind. Die wichtigsten Ergebnisse sind, dass sich die Metabolitenprofile des Calvin-Benson-Zyklus zwischen C3- und C4-Spezies und zwischen verschiedenen C3-Spezies unterscheiden, einschließlich einer sehr unterschiedlichen Reaktion auf steigende Strahlungsintensität bei Arabidopsis und Reis. Diese Ergebnisse bestätigen, dass der Calvin-Benson-Zyklus zwischen C3- und C4-Spezies und, höchst unerwartet, sogar zwischen verschiedenen C3-Spezies divergiert. Darüber hinaus unterstützen die primären Stoffwechselprofile das aktuelle C4-Evolutionsmodell in der Gattung Flaveria, liefern auch neue Erkenntnisse und eröffnen neue Fragen. Die Metabolitenprofile weisen auch auf eine fortschreitende Anpassung des Calvin-Benson-Zyklus während der Evolution der C4-Photosynthese hin. Insgesamt unterstreicht diese Dissertation die Bedeutung eines metabolitenzentrierten Ansatzes, um Unterschiede in Arten aufzudecken, die anscheinend dieselben Photosynthesewege teilen, und als valide Methode zur Untersuchung des evolutionären Übergangs zwischen C3- und C4-Photosynthese. KW - Photosynthesis KW - C4 KW - Evolution KW - Photosynthese KW - C4 KW - Evolution Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-522200 ER - TY - JOUR A1 - Spijkerman, Elly A1 - Lukas, Marcus A1 - Wacker, Alexander T1 - Ecophysiological strategies for growth under varying light and organic carbon supply in two species of green microalgae differing in their motility JF - Phytochemistry : an international journal of plant biochemistry N2 - Mixing events in stratified lakes result in microalgae being exposed to varying conditions in light and organic carbon concentrations. Stratified lakes consist of an upper illuminated strata and a lower, darker strata where organic carbon accumulates. Therefore, in this contribution we explore the importance of dissolved organic carbon for growth under various light intensities by measuring some ecophysiological adaptations in two green microalgae. We compared the non-motile Chlorella vulgaris with the flagellated Chlamydomonas acidophila under auto-, mixo-, and heterotrophic growth conditions. In both algae the maximum photosynthetic and growth rates were highest under mixotrophy, and both algae appeared inhibited in their phosphorus acquisition under heterotrophy. Heterotrophic conditions provoked the largest differences as C. vulgaris produced chlorophyll a in darkness and grew as well as in autotrophic conditions, whereas Chl. acidophila bleached and could not grow heterotrophically. Although the fatty acid composition of both phytoplankton species differed, both species reacted in a similar way to changes in their growth conditions, mainly by a decrease of C18:3n-3 and an increase of C18:1n-9 from auto- to heterotrophic conditions. The two contrasting responses within the group of green microalgae suggest that dissolved organic carbon has a high deterministic potential to explain the survival and behaviour of green algae in the deeper strata of lakes. KW - Chlamydomonas acidophila KW - Chlorella vulgaris KW - Chlorophyceae KW - Ecophysiology on freshwater phytoplankton KW - Glucose KW - Mixotrophy KW - Osmotrophy KW - Heterotrophy KW - Photosynthesis KW - Fatty acids Y1 - 2017 U6 - https://doi.org/10.1016/j.phytochem.2017.08.018 SN - 0031-9422 SN - 1873-3700 VL - 144 SP - 43 EP - 51 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Zhang, Youjun A1 - Sun, Feng A1 - Fettke, Jörg A1 - Schoettler, Mark Aurel A1 - Ramsden, Lawrence A1 - Fernie, Alisdair R. A1 - Lim, Boon Leong T1 - Heterologous expression of AtPAP2 in transgenic potato influences carbon metabolism and tuber development JF - FEBS letters : the journal for rapid publication of short reports in molecular biosciences N2 - Changes in carbon flow and sink/source activities can affect floral, architectural, and reproductive traits of plants. In potato, overexpression (OE) of the purple acid phosphatase 2 of Arabidopsis (AtPAP2) resulted in earlier flowering, faster growth rate, increased tubers and tuber starch content, and higher photosynthesis rate. There was a significant change in sucrose, glucose and fructose levels in leaves, phloem and sink biomass of the OE lines, consistent with an increased expression of sucrose transporter 1 (StSUT1). Furthermore, the expression levels and enzyme activity of sucrose-phosphate synthase (SPS) were also significantly increased in the OE lines. These findings strongly suggest that higher carbon supply from the source and improved sink strength can improve potato tuber yield. (C) 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. KW - Potato KW - AtPAP2 KW - Photosynthesis KW - Tuber yield KW - Sugar efflux Y1 - 2014 U6 - https://doi.org/10.1016/j.febslet.2014.08.019 SN - 0014-5793 SN - 1873-3468 VL - 588 IS - 20 SP - 3726 EP - 3731 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ebenhoeh, Oliver A1 - Houwaart, Torsten A1 - Lokstein, Heiko A1 - Schlede, Stephanie A1 - Tirok, Katrin T1 - A minimal mathematical model of nonphotochemical quenching of chlorophyll fluorescence JF - Biosystems : journal of biological and information processing sciences N2 - Under natural conditions, plants are exposed to rapidly changing light intensities. To acclimate to such fluctuations, plants have evolved adaptive mechanisms that optimally exploit available light energy and simultaneously minimise damage of the photosynthetic apparatus through excess light. An important mechanism is the dissipation of excess excitation energy as heat which can be measured as nonphotochemical quenching of chlorophyll fluorescence (NPQ). In this paper, we present a highly simplified mathematical model that captures essential experimentally observed features of the short term adaptive quenching dynamics. We investigate the stationary and dynamic behaviour of the model and systematically analyse the dependence of characteristic system properties on key parameters such as rate constants and pool sizes. Comparing simulations with experimental data allows to derive conclusions about the validity of the simplifying assumptions and we further propose hypotheses regarding the role of the xanthophyll cycle in NPQ. We envisage that the presented theoretical description of the light reactions in conjunction with short term adaptive processes serves as a basis for the development of more detailed mechanistic models by which the molecular mechanisms of NPQ can be theoretically studied. KW - Photosynthesis KW - Light reactions KW - Nonphotochemical quenching of chlorophyll fluorescence KW - Chlorophyll fluorescence KW - Mathematical model Y1 - 2011 U6 - https://doi.org/10.1016/j.biosystems.2010.10.011 SN - 0303-2647 VL - 103 IS - 2 SP - 196 EP - 204 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Franck, Siegfried A1 - von Bloh, Werner A1 - Müller, Christoph A1 - Bondeau, Alberte A1 - Sakschewski, B. T1 - Harvesting the sun new estimations of the maximum population of planet Earth JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - The maximum population, also called Earth's carrying capacity, is the maximum number of people that can live on the food and other resources available on planet Earth. Previous investigations estimated the maximum carrying capacity as large as about 1 trillion people under the assumption that photosynthesis is the limiting process. Here we use a present state-of-the-art dynamic global vegetation model with managed planetary land surface, Lund-Potsdam-Jena managed Land (LPJmL), to calculate the yields of the most productive crops on a global 0.5 degrees x 0.5 degrees grid. Using the 2005 crop distribution the model predicts total harvested calories that are sufficient for the nutrition of 11.4 billion people. We define scenarios where humankind uses the whole land area for agriculture, saves the rain forests and the boreal evergreen forests or cultivates only pasture to feed animals. Every scenario is run in an extreme version with no allowance for urban and recreational needs and in two soft versions with a certain area per person for non-agricultural use. We find that there are natural limits of the maximum carrying capacity which are independent of any increase in agricultural productivity, if non-agricultural land use is accounted for. Using all land planet Earth can sustain 282 billion people. The save-forests-scenario yields 150 billion people. The scenario that cultivates only pasture to feed animals yields 96 billion people. Nevertheless, we should always have in mind that all our calculated numbers for the carrying capacity refer to extreme scenarios where humankind may only vegetate on this planet. Our numbers are considerably higher than the general median estimate of upper bounds of human population found in the literature in the order of 10 billion. KW - Maximum population KW - Human carrying capacity KW - Photosynthesis KW - Dynamical global vegetation model Y1 - 2011 U6 - https://doi.org/10.1016/j.ecolmodel.2011.03.030 SN - 0304-3800 VL - 222 IS - 12 SP - 2019 EP - 2026 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Damaraju, Sridevi A1 - Schlede, Stephanie A1 - Eckhardt, Ulrich A1 - Lokstein, Heiko A1 - Grimm, Bernhard T1 - Functions of the water soluble chlorophyll-binding protein in plants JF - Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants N2 - Functional aspects of water soluble chlorophyll-binding protein (WSCP) in plants were investigated during the courses of leaf senescence, chlorophyll biogenesis, stress response and photoprotection. The cDNA sequence encoding WSCP from cauliflower was cloned into a binary vector to facilitate Agrobacterium tumefaciens mediated transformation of Nicotiana tabacum. The resultant transgenic tobacco plants overexpressed the CauWSCP gene under the control of a 35S-promoter. Analyses of protein and pigment contents indicate that WSCP overexpression does not enhance chlorophyll catabolism in vivo, thus rendering a role of WSCP in Chl degradation unlikely. Accumulation of higher levels of protochlorophyllide in WSCP overexpressor plants corroborates a proposed temporary storage and carrier function of WSCP for chlorophyll and late precursors. Although WSCP overexpressor plants did not show significant differences in non-photochemical quenching of chlorophyll fluorescence, they are characterized by significantly lower zeaxanthin accumulation and peroxidase activity at different light intensities, even at high light intensities of 700-900 mu mol photons m(-2) s(-1). These results suggest a photoprotective function of the functional chlorophyll binding-WSCP tetramer by shielding of chlorophylls from molecular oxygen. KW - Chlorophyll metabolism KW - Non-photochemical quenching of chlorophyll fluorescence KW - Photooxidation KW - Photoprotection KW - Photosynthesis Y1 - 2011 U6 - https://doi.org/10.1016/j.jplph.2011.02.007 SN - 0176-1617 VL - 168 IS - 12 SP - 1444 EP - 1451 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Spijkerman, Elly A1 - Wacker, Alexander T1 - Interactions between P-limitation and different C conditions on the fatty acid composition of an extremophile microalga JF - Extremophiles : life under extreme conditions N2 - The extremophilic microalga Chlamydomonas acidophila inhabits very acidic waters (pH 2-3.5), where its growth is often limited by phosphorus (P) or colimited by P and inorganic carbon (CO(2)). Because this alga is a major food source for predators in acidic habitats, we studied its fatty acid content, which reflects their quality as food, grown under a combination of P-limited and different carbon conditions (either mixotrophically with light + glucose or at high or low CO(2), both without glucose). The fatty acid composition largely depended on the cellular P content: stringent P-limited cells had a higher total fatty acid concentration and had a lower percentage of polyunsaturated fatty acids. An additional limitation for CO(2) inhibited this decrease, especially reflected in enhanced concentrations of 18:3(9,12,15) and 16:4(3,7,10,13), resulting in cells relatively rich in polyunsaturated fatty acids under colimiting growth conditions. The percentage of polyunsaturated to total fatty acid content was positively related with maximum photosynthesis under all conditions applied. The two factors, P and CO(2), thus interact in their effect on the fatty acid composition in C. acidophila, and colimited cells P-limited algae can be considered a superior food source for herbivores because of the high total fatty acid content and relative richness in polyunsaturated fatty acids. KW - Acidophilic algae KW - Cellular P quota KW - Chlamydomonas acidophila KW - Chlorophyceae KW - Colimitation KW - CO(2) KW - Fatty acid composition KW - Food quality KW - Glucose KW - Mixotrophy KW - Photosynthesis KW - Phytoplankton KW - Phosphorus limitation Y1 - 2011 U6 - https://doi.org/10.1007/s00792-011-0390-3 SN - 1431-0651 VL - 15 IS - 5 SP - 597 EP - 609 PB - Springer CY - Tokyo ER - TY - JOUR A1 - Clegg, Mark R. A1 - Gaedke, Ursula A1 - Böhrer, Bertram A1 - Spijkerman, Elly T1 - Complementary ecophysiological strategies combine to facilitate survival in the hostile conditions of a deep chlorophyll maximum JF - Oecologia N2 - In the deep, cooler layers of clear, nutrient-poor, stratified water bodies, phytoplankton often accumulate to form a thin band or "deep chlorophyll maximum" (DCM) of ecological importance. Under such conditions, these photosynthetic microorganisms may be close to their physiological compensation points and to the boundaries of their ecological tolerance. To grow and survive any resulting energy limitation, DCM species are thought to exhibit highly specialised or flexible acclimation strategies. In this study, we investigated several of the adaptable ecophysiological strategies potentially employed by one such species, Chlamydomonas acidophila: a motile, unicellular, phytoplanktonic flagellate that often dominates the DCM in stratified, acidic lakes. Physiological and behavioural responses were measured in laboratory experiments and were subsequently related to field observations. Results showed moderate light compensation points for photosynthesis and growth at 22A degrees C, relatively low maintenance costs, a behavioural preference for low to moderate light, and a decreased compensation point for photosynthesis at 8A degrees C. Even though this flagellated alga exhibited a physiologically mediated diel vertical migration in the field, migrating upwards slightly during the day, the ambient light reaching the DCM was below compensation points, and so calculations of daily net photosynthetic gain showed that survival by purely autotrophic means was not possible. Results suggested that strategies such as low-light acclimation, small-scale directed movements towards light, a capacity for mixotrophic growth, acclimation to low temperature, in situ exposure to low O-2, high CO2 and high P concentrations, and an avoidance of predation, could combine to help overcome this energetic dilemma and explain the occurrence of the DCM. Therefore, corroborating the deceptive ecophysiological complexity of this and similar organisms, only a suite of complementary strategies can facilitate the survival of C. acidophila in this DCM. KW - DCM KW - Photosynthesis KW - Growth KW - Behaviour KW - Phytoplankton Y1 - 2012 U6 - https://doi.org/10.1007/s00442-011-2225-4 SN - 0029-8549 VL - 169 IS - 3 SP - 609 EP - 622 PB - Springer CY - New York ER - TY - THES A1 - Götze, Jan Philipp T1 - Influence of protein and solvent environments on quantum chemical properties of photosynthesis enzymes and photoreceptors T1 - Einfluss von Protein- und Lösungsmittelumgebungen auf quantenchemische Eigenschaften von Photosynthese-Enzymen und -Photorezeptoren N2 - This thesis contains quantum chemical models and force field calculations for the RuBisCO isotope effect, the spectral characteristics of the blue-light sensor BLUF and the light harvesting complex II. The work focuses on the influence of the environment on the corresponding systems. For RuBisCO, it was found that the isotopic effect is almost unaffected by the environment. In case of the BLUF domain, an amino acid was found to be important for the UV/vis spectrum, but unaccounted for in experiments so far (Ser41). The residue was shown to be highly mobile and with a systematic influence on the spectral shift of the BLUF domain chromophore (flavin). Finally, for LHCII it was found that small changes in the geometry of a Chlorophyll b/Violaxanthin chromophore pair can have strong influences regarding the light harvesting mechanism. Especially here it was seen that the proper description of the environment can be critical. In conclusion, the environment was observed to be of often unexpected importance for the molecular properties, and it seems not possible to give a reliable estimate on the changes created by the presence of the environment. N2 - Diese Arbeit beinhaltet quantenchemische und molekularmechanische Modelle zum Isotopeneffekt des Enzyms RuBisCO, der spektralen Charakterisierung des Blaulicht-Rezeptors BLUF und dem Lichtsammelkomplex II (LHCII). Es wurden vor allem die Einflüsse der Umgebung auf die entsprechenden Systeme untersucht. Für RuBisCO wurde gefunden, dass der Isotopeneffekt nur marginal von der Umgebung abhängt. Im Falle der BLUF Domäne wurde eine Aminosäure charakterisiert (Ser41), die bis dato experimentell noch nicht beschrieben war. Es wurde festgestellt, dass Ser41 hochmobil ist und einen systematischen Einfluss auf die spektrale Verschiebung des BLUF Chromophors (Flavin) hat. Schließlich wurde bei LHCII festgestellt, dass kleine Veränderungen in der Geometrie eines Chlorophyll b/Violaxanthin Chromophorenpaares bereits massive Einflüsse auf den Mechanismus des Lichtsammelprozesses haben können. Insbesondere hier zeigt sich, wie kritisch die genaue Beschreibung der Umgebung ist. Zusammenfassend wurde beobachtet, dass sich die Umgebung in oft unerwarteter Weise auf die molekularen Eigenschaften auswirken kann und es daher nicht möglich zu sein scheint, die entsprechenden Effekte vorher abzuschätzen. KW - Photosynthese KW - Molekülmodelle KW - RuBisCO KW - LHCII KW - Blaulichtsensoren KW - Photosynthesis KW - molecular modeling KW - RuBisCO KW - LHCII KW - Blue-light sensors Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-51135 ER -