TY - THES A1 - Codutti, Agnese T1 - Behavior of magnetic microswimmers T1 - Verhalten magnetischer Microschwimmer BT - simulations for natural swimmers and synthetic propellers BT - Simulationen von natürlichen Schwimmern und synthetischen Propellern N2 - Microswimmers, i.e. swimmers of micron size experiencing low Reynolds numbers, have received a great deal of attention in the last years, since many applications are envisioned in medicine and bioremediation. A promising field is the one of magnetic swimmers, since magnetism is biocom-patible and could be used to direct or actuate the swimmers. This thesis studies two examples of magnetic microswimmers from a physics point of view. The first system to be studied are magnetic cells, which can be magnetic biohybrids (a swimming cell coupled with a magnetic synthetic component) or magnetotactic bacteria (naturally occurring bacteria that produce an intracellular chain of magnetic crystals). A magnetic cell can passively interact with external magnetic fields, which can be used for direction. The aim of the thesis is to understand how magnetic cells couple this magnetic interaction to their swimming strategies, mainly how they combine it with chemotaxis (the ability to sense external gradient of chemical species and to bias their walk on these gradients). In particular, one open question addresses the advantage given by these magnetic interactions for the magnetotactic bacteria in a natural environment, such as porous sediments. In the thesis, a modified Active Brownian Particle model is used to perform simulations and to reproduce experimental data for different systems such as bacteria swimming in the bulk, in a capillary or in confined geometries. I will show that magnetic fields speed up chemotaxis under special conditions, depending on parameters such as their swimming strategy (run-and-tumble or run-and-reverse), aerotactic strategy (axial or polar), and magnetic fields (intensities and orientations), but it can also hinder bacterial chemotaxis depending on the system. The second example of magnetic microswimmer are rigid magnetic propellers such as helices or random-shaped propellers. These propellers are actuated and directed by an external rotating magnetic field. One open question is how shape and magnetic properties influence the propeller behavior; the goal of this research field is to design the best propeller for a given situation. The aim of the thesis is to propose a simulation method to reproduce the behavior of experimentally-realized propellers and to determine their magnetic properties. The hydrodynamic simulations are based on the use of the mobility matrix. As main result, I propose a method to match the experimental data, while showing that not only shape but also the magnetic properties influence the propellers swimming characteristics. N2 - Die Forschung an Mikroschwimmern oder genauer gesagt an aktiv schwimmenden Mikroorganismen oder Objekten mit niedrigen Reynolds Zahlen, hat in den letzten Jahren wegen ihrer vielfältigen Anwendungen in der Medizin und Bioremediation stark an Bedeutung gewonnen. Besonders vielversprechend ist die Arbeit mit magnetischen Mikroschwimmern, da deren biokompatibler Magnetismus genutzt werden kann um die Schwimmer gezielt zu steuern. In dieser Arbeit werden zwei Beispiele von magnetischen Mikroschwimmern aus physikalischer Sicht untersucht. Das erste Modellsystem hierfür sind magnetische Zellen. Diese können entweder magnetische Biohybride (eine schwimm-Zelle gekoppelt mit einer synthetischen magnetischen Komponente) oder magnetotaktische Bakterien (natürlich vorkommende Bakterien die eine intrazelluläre Kette von magnetischen Kristallen produzieren) sein. Die passive Wechselwirkung der magnetischen Zelle mit einem externen Magnetfeld kann zu deren Steuerung genutzt werden. Das Ziel dieser Arbeit ist es zu verstehen wie magnetische Zellen die magnetische Wechselwirkung mit ihre Schwimmstrategie verknüpfen, oder genauer gesagt, wie sie sie zur Chemotaxis (die Fähigkeit externe chemische Gradienten wahrzunehmen und die Fortbewegungsrichtung daran anzupassen) zu nutzen. Es ist immer noch nicht restlos geklärt worin in der natürlichen Umgebung der magnetischen Bakterien, wie beispielsweise in porösem Sediment, der Vorteil der Wechselwirkung mit dem externen magnetischen Feld liegt. In dieser Arbeit wurde ein modifiziertes „Active Brownian Particle model“ verwendet um mittels Computersimulationen experimentelle Ergebnisse an Bakterien zu reproduzieren, die sich frei, in einer Glaskapillare, oder in anders begrenzten Geometrien bewegen. Ich werde zeigen, dass abhängig von der Schwimmstrategie („run-and-tumble“ oder „runand-reverse“), aerotaktische Strategie (axial oder polar), und der Feldintensität und Orientierung, das magnetische Feld Chemotaxis beschleunigen kann. Abhängig von dem gewählten Modellsystem kann es jedoch auch zu einer Behinderung der Chemotaxis kommen. Das zweite Beispiel für magnetische Mikroschwimmer sind starre (z.B. Helices) oder zufällig geformte magnetische Propeller. Sie werden durch ein externes magnetisches Feld angetrieben und gelenkt. Hierbei stellt sich die Frage wie die Form der Propeller deren Verhalten beeinflusst und wie sie für eine bestimmte Anwendung optimiert werden können. Daher ist es das Ziel dieser Arbeit Simulationsmethoden vorzuschlagen um das experimentell beobachtete Verhalten zu reproduzieren und die magnetischen Eigenschaften der Propeller zu beschreiben. Hierfür wird die Mobilitätsmatrix verwendet um die hydrodynamischen Simulationen zu realisieren. Ein Hauptresultat meiner Arbeit ist eine neue Methode, welche die Simulationen in Einklang mit den experimentellen Resultaten bringt. Hierbei zeigt sich, dass nicht nur die Form sondern insbesondere auch die magnetischen Eigenschaften die Schwimmcharakteristik der Propeller entscheidend beeinflussen. KW - microswimmers KW - magnetism KW - bacteria KW - propellers KW - simulation KW - Microschwimmer KW - Magnetismus KW - Bakterien KW - Propeller KW - Simulationen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-422976 ER - TY - THES A1 - Hintsche, Marius T1 - Locomotion of a bacterium with a polar bundle of flagella T1 - Fortbewegung eines Bakteriums mit einem polaren Flagellenbündel BT - insights into movement and navigation by fluorescence high speed microscopy BT - Erkentnisse über Bewegung und Navigation mittels Hochgeschwindigkeitsfluoreszenzmikroskopie N2 - Movement and navigation are essential for many organisms during some parts of their lives. This is also true for bacteria, which can move along surfaces and swim though liquid environments. They are able to sense their environment, and move towards environmental cues in a directed fashion. These abilities enable microbial lifecyles in biofilms, improved food uptake, host infection, and many more. In this thesis we study aspects of the swimming movement - or motility - of the soil bacterium (P. putida). Like most bacteria, P. putida swims by rotating its helical flagella, but their arrangement differs from the main model organism in bacterial motility research: (E. coli). P. putida is known for its intriguing motility strategy, where fast and slow episodes can occur after each other. Up until now, it was not known how these two speeds can be produced, and what advantages they might confer to this bacterium. Normally the flagella, the main component of thrust generation in bacteria, are not observable by ordinary light microscopy. In order to elucidate this behavior, we therefore used a fluorescent staining technique on a mutant strain of this species to specifically label the flagella, while leaving the cell body only faintly stained. This allowed us to image the flagella of the swimming bacteria with high spacial and temporal resolution with a customized high speed fluorescence microscopy setup. Our observations show that P. putida can swim in three different modes. First, It can swim with the flagella pushing the cell body, which is the main mode of swimming motility previously known from other bacteria. Second, it can swim with the flagella pulling the cell body, which was thought not to be possible in situations with multiple flagella. Lastly, it can wrap its flagellar bundle around the cell body, which results in a speed wich is slower by a factor of two. In this mode, the flagella are in a different physical conformation with a larger radius so the cell body can fit inside. These three swimming modes explain the previous observation of two speeds, as well as the non strict alternation of the different speeds. Because most bacterial swimming in nature does not occur in smoothly walled glass enclosures under a microscope, we used an artificial, microfluidic, structured system of obstacles to study the motion of our model organism in a structured environment. Bacteria were observed in microchannels with cylindrical obstacles of different sizes and with different distances with video microscopy and cell tracking. We analyzed turning angles, run times, and run length, which we compared to a minimal model for movement in structured geometries. Our findings show that hydrodynamic interactions with the walls lead to a guiding of the bacteria along obstacles. When comparing the observed behavior with the statics of a particle that is deflected with every obstacle contact, we find that cells run for longer distances than that model. Navigation in chemical gradients is one of the main applications of motility in bacteria. We studied the swimming response of P. putida cells to chemical stimuli (chemotaxis) of the common food preservative sodium benzoate. Using a microfluidic gradient generation device, we created gradients of varying strength, and observed the motion of cells with a video microscope and subsequent cell tracking. Analysis of different motility parameters like run lengths and times, shows that P. putida employs the classical chemotaxis strategy of E. coli: runs up the gradient are biased to be longer than those down the gradient. Using the two different run speeds we observed due to the different swimming modes, we classify runs into `fast' and `slow' modes with a Gaussian mixture model (GMM). We find no evidence that P. putida's uses its swimming modes to perform chemotaxis. In most studies of bacterial motility, cell tracking is used to gather trajectories of individual swimming cells. These trajectories then have to be decomposed into run sections and tumble sections. Several algorithms have been developed to this end, but most require manual tuning of a number of parameters, or extensive measurements with chemotaxis mutant strains. Together with our collaborators, we developed a novel motility analysis scheme, based on generalized Kramers-Moyal-coefficients. From the underlying stochastic model, many parameters like run length etc., can be inferred by an optimization procedure without the need for explicit run and tumble classification. The method can, however, be extended to a fully fledged tumble classifier. Using this method, we analyze E. coli chemotaxis measurements in an aspartate analog, and find evidence for a chemotactic bias in the tumble angles. N2 - Bewegung und Navigation sind für viele Organismen in einigen Bereichen ihres Lebens unerlässlich. Dies gilt auch für Bakterien, die sich entlang von Oberflächen bewegen und durch Flüssigkeiten schwimmen können. Sie sind in der Lage, ihre Umgebung wahr zu nehmen und sich gezielt auf Signale in der Umwelt zuzubewegen. Diese Fähigkeiten ermöglichen mikrobielle Lebenszyklen in Biofilmen, verbesserte Nahrungsaufnahme, Wirtsinfektion und vieles mehr. In dieser Arbeit untersuchen wir Aspekte der Schwimmbewegung - oder Motilität - des Bodenbakteriums Pseudomonas putida (P. putida). Wie die meisten Bakterien schwimmt P. putida durch Rotation seiner schraubenförmigen Flagellen, aber ihre Anordnung unterscheidet sich vom Hauptmodellorganismus in der bakteriellen Motilitätsforschung: Escherichia coli (E. coli). P. putida ist bekannt für seine faszinierende Motilitätsstrategie, bei der schnelle und langsame Episoden hintereinander auftreten können. Bislang war nicht bekannt, wie diese beiden Geschwindigkeiten erzeugt werden können und welche Vorteile sie diesem Bakterium bringen können. Normalerweise sind die Flagellen, die Hauptkomponente der Schuberzeugung bei Bakterien, mit herkömmlicher Lichtmikroskopie nicht zu beobachten. Um dieses Verhalten zu verdeutlichen, haben wir daher eine Fluoreszenzfärbetechnik an einem Mutantenstamm dieser Spezies eingesetzt, um die Flagellen spezifisch zu markieren und gleichzeitig den Zellkörper nur schwach gefärbt zu lassen. Dies ermöglichte es uns, die Geißeln der schwimmenden Bakterien mit hoher räumlicher und zeitlicher Auflösung mit einem maßgeschneiderten Hochgeschwindigkeits-Fluoreszenzmikroskopie-Setup darzustellen. Unsere Beobachtungen zeigen, dass P. putida in drei verschiedenen Modi schwimmen kann. Erstens kann es mit den Flagellen den Zellkörper vorwärts drücken, was der wichtigste Modus der Schwimmmotilität ist, der zuvor von anderen Bakterien bekannt war. Zweitens kann es mit den Flagellen den Zellkörper hinter sich her ziehen, was in Situationen mit mehreren Flagellen für nicht möglich gehalten wurde. Schließlich kann es sein Flagellenbündel um den Zellkörper wickeln, was zu einer um den Faktor zwei verlangsamten Geschwindigkeit führt. In diesem Modus befinden sich die Flagellen in einer anderen physikalischen Konformation mit einem größeren Radius, so dass der Zellkörper hineinpassen kann. Diese drei Schwimmmodi erklären die vorherige Beobachtung von zwei Geschwindigkeiten sowie das nicht strenge Abwechseln der verschiedenen Geschwindigkeiten. Da das Schwimmen von Bakterien in der Natur nicht in glattwandigen Glaskammern unter dem Mikroskop stattfindet, haben wir ein künstliches, mikrofluidisches, strukturiertes System von Hindernissen verwendet, um die Bewegung unseres Modellorganismus in einer strukturierten Umgebung zu untersuchen. Bakterien wurden in Mikrokanälen mit zylindrischen Hindernissen unterschiedlicher Größe und mit unterschiedlichen Abständen mit Videomikroskopie und Zelltracking beobachtet. Wir analysierten Turn-Winkel, Run-Zeiten und Run-Längen, die wir mit einem Minimalmodell für die Bewegung in strukturierten Geometrien verglichen haben. Unsere Ergebnisse zeigen, dass hydrodynamische Wechselwirkungen mit den Wänden zu einer Leitung der Bakterien entlang von Hindernissen führen. Vergleicht man das beobachtete Verhalten mit der Statik eines Partikels, das bei jedem Hinderniskontakt umgelenkt wird, so stellt man fest, dass Zellen über längere Strecken Laufen als in dieses Modell. Die Navigation in chemischen Gradienten ist eine der Hauptapplikation der Motilität bei Bakterien. Wir untersuchten die Schwimmreaktion von P. putida Zellen auf chemische Reize (Chemotaxis) des gängigen Lebensmittelkonservierungsmittels Natriumbenzoat. Mit einem mikrofluidischen Gradientengenerator erzeugten wir Gradienten unterschiedlicher Stärke und beobachteten die Bewegung der Zellen mit einem Videomikroskop und anschließendem Zelltracking. Die Analyse verschiedener Motilitätsparameter wie Lauflängen und -zeiten zeigt, dass P. putida die klassische Chemotaxiestrategie von E. coli anwendet: Läufe gradientenaufwärts sind im Mittel länger sein als solche gradientenabwärts. Mit den beiden verschiedenen Laufgeschwindigkeiten, die wir aufgrund der unterschiedlichen Schwimmmodi beobachtet haben, klassifizieren wir Läufe in schnelle und langsame Modi mit einem "Gaussian Mixture Model" (GMM). Wir finden keinen Beweis dafür, dass P. putida seine Schwimmmodi nutzt, um Chemotaxis durchzuführen. In den meisten Studien zur bakteriellen Motilität wird das Zelltracking verwendet, um die Trajektorien einzelner schwimmender Zellen zu erfassen. Diese Trajektorien müssen dann in Lauf- und Wendeabschnitte (Runs und Turns) zerlegt werden. Mehrere Algorithmen wurden zu diesem Zweck entwickelt, aber die meisten erfordern eine manuelle Abstimmung einer Reihe von Parametern oder umfangreiche Messungen mit chemotaktischen Mutantenstämmen. Zusammen mit unseren Mitarbeitern haben wir ein neuartiges Motilitätsanalyseschema entwickelt, das auf verallgemeinerten Kramers-Moyal-Koeffizienten basiert. Aus dem zugrunde liegenden stochastischen Modell können viele Parameter wie Lauflänge etc. durch ein Optimierungsverfahren abgeleitet werden, ohne dass eine explizite Run und Turn Klassifizierung erforderlich ist. Das Verfahren kann jedoch zu einem vollwertigen Klassifizierer ausgebaut werden. Mit dieser Methode analysieren wir E. coli Chemotaxis Messungen in einem Gradienten eines Aspartat analogen Chemoattractors und finden Beweise für eine chemotaktische Variation der Tumble-Winkeln. KW - bacteria KW - motility KW - chemotaxis KW - Bakterien KW - Motilität KW - Chemotaxis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426972 ER - TY - THES A1 - Numberger, Daniela T1 - Urban wastewater and lakes as habitats for bacteria and potential vectors for pathogens T1 - Urbane Abwässer und Seen als Habitat für Bakterien und potentielle Vektoren für Krankheitserreger N2 - Wasser ist lebensnotwendig und somit eine essentielle Ressource. Jedoch sind unsere Süßwasser-Ressourcen begrenzt und ihre Erhaltung daher besonders wichtig. Verschmutzungen mit Chemikalien und Krankheitserregern, die mit einer wachsenden Bevölkerung und Urbanisierung einhergehen, verschlechtern die Qualität unseres Süßwassers. Außerdem kann Wasser als Übertragungsvektor für Krankheitserreger dienen und daher wasserbürtige Krankheiten verursachen. Der Leibniz-Forschungsverbund INFECTIONS‘21 untersuchte innerhalb der interdisziplinären Forschungsgruppe III - „Wasser", Gewässer als zentralen Mittelpunkt für Krankheiterreger. Dabei konzentrierte man sich auf Clostridioides difficile sowie aviäre Influenza A-Viren, von denen angenommen wird, dass sie in die Gewässer ausgeschieden werden. Ein weiteres Ziel bestand darin, die bakterielle Gemeinschaften eines Klärwerkes der deutschen Hauptstadt Berlin zu charakterisieren, um anschließend eine Bewertung des potentiellen Gesundheitsrisikos geben zu können. Bakterielle Gemeinschaften des Roh- und Klarwassers aus dem Klärwerk unterschieden sich signifikant voneinander. Der Anteil an Darm-/Fäkalbakterien war relativ niedrig und potentielle Darmpathogene wurden größtenteils aus dem Rohwasser entfernt. Ein potentielles Gesundheitsrisiko konnte allerdings von potentiell pathogenen Legionellen wie L. lytica festgestellt werden, deren relative Abundanz im Klarwasser höher war als im Rohwasser. Es wurden außerdem drei C. difficile-Isolate aus den Klärwerk-Rohwasser und einem städtischen Badesee in Berlin (Weisser See) gewonnen und sequenziert. Die beiden Isolate aus dem Klärwerk tragen keine Toxin-Gene, wohingegen das Isolat aus dem See Toxin-Gene besitzt. Alle drei Isolate sind sehr nah mit humanen Stämmen verwandt. Dies deutet auf ein potentielles, wenn auch sporadisches Gesundheitsrisiko hin. (Aviäre) Influenza A-Viren wurden in 38.8% der untersuchten Sedimentproben mittels PCR detektiert, aber die Virusisolierung schlug fehl. Ein Experiment mit beimpften Wasser- und Sedimentproben zeigte, dass für die Isolierung aus Sedimentproben eine relativ hohe Viruskonzentration nötig ist. In Wasserproben ist jedoch ein niedriger Titer an Influenza A-Viren ausreichend, um eine Infektion auszulösen. Es konnte zudem auch festgestellt werden, dass sich „Madin-Darby Canine Kidney (MDCK)―-Zellkulturen im Gegensatz zu embryonierten Hühnereiern besser eignen, um Influenza A-Viren aus Sediment zu isolieren. Zusammenfassend lässt sich sagen, dass diese Arbeit mögliche Gesundheitsrisiken aufgedeckt hat, wie etwa durch Legionellen im untersuchten Berliner Klärwerk, deren relative Abundanz in geklärtem Abwasser höher ist als im Rohwasser. Desweiteren wird indiziert, dass Abwasser und Gewässer als Reservoir und Vektor für pathogene Organismen dienen können, selbst für nicht-typische Wasser-Pathogene wie C. difficile. N2 - Water is essential to life and thus, an essential resource. However, freshwater resources are limited and their maintenance is crucial. Pollution with chemicals and pathogens through urbanization and a growing population impair the quality of freshwater. Furthermore, water can serve as vector for the transmission of pathogens resulting in water-borne illness. The Interdisciplinary Research Group III – "Water" of the Leibniz alliance project INFECTIONS‘21 investigated water as a hub for pathogens focusing on Clostridioides difficile and avian influenza A viruses that may be shed into the water. Another aim of this study was to characterize the bacterial communities in a wastewater treatment plant (WWTP) of the capital Berlin, Germany to further assess potential health risks associated with wastewater management practices. Bacterial communities of WWTP inflow and effluent differed significantly. The proportion of fecal/enteric bacteria was relatively low and OTUs related to potential enteric pathogens were largely removed from inflow to effluent. However, a health risk might exist as an increased relative abundance of potential pathogenic Legionella spp. such as L. lytica was observed. Three Clostridioides difficile isolates from wastewater inflow and an urban bathing lake in Berlin (‗Weisser See‘) were obtained and sequenced. The two isolates from the wastewater did not carry toxin genes, whereas the isolate from the lake was positive for the toxin genes. All three isolates were closely related to human strains. This indicates a potential, but rather sporadic health risk. Avian influenza A viruses were detected in 38.8% of sediment samples by PCR, but virus isolation failed. An experiment with inoculated freshwater and sediment samples showed that virus isolation from sediment requires relatively high virus concentrations and worked much better in Madin-Darby Canine Kidney (MDCK) cell cultures than in embryonated chicken eggs, but low titre of influenza contamination in freshwater samples was sufficient to recover virus. In conclusion, this work revealed potential health risks coming from bacterial groups with pathogenic potential such as Legionella spp. whose relative abundance is higher in the released effluent than in the inflow of the investigated WWTP. It further indicates that water bodies such as wastewater and lake sediments can serve as reservoir and vector, even for non-typical water-borne or water-transmitted pathogens such as C. difficile. KW - water KW - Wasser KW - bacteria KW - Bakterien KW - influenza A viruses KW - Influenza A Viren KW - pathogens KW - Krankheitserreger Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437095 ER - TY - THES A1 - Alirezaeizanjani, Zahra T1 - Movement strategies of a multi-mode bacterial swimmer N2 - Bacteria are one of the most widespread kinds of microorganisms that play essential roles in many biological and ecological processes. Bacteria live either as independent individuals or in organized communities. At the level of single cells, interactions between bacteria, their neighbors, and the surrounding physical and chemical environment are the foundations of microbial processes. Modern microscopy imaging techniques provide attractive and promising means to study the impact of these interactions on the dynamics of bacteria. The aim of this dissertation is to deepen our understanding four fundamental bacterial processes – single-cell motility, chemotaxis, bacterial interactions with environmental constraints, and their communication with neighbors – through a live cell imaging technique. By exploring these processes, we expanded our knowledge on so far unexplained mechanisms of bacterial interactions. Firstly, we studied the motility of the soil bacterium Pseudomonas putida (P. putida), which swims through flagella propulsion, and has a complex, multi-mode swimming tactic. It was recently reported that P. putida exhibits several distinct swimming modes – the flagella can push and pull the cell body or wrap around it. Using a new combined phase-contrast and fluorescence imaging set-up, the swimming mode (push, pull, or wrapped) of each run phase was automatically recorded, which provided the full swimming statistics of the multi-mode swimmer. Furthermore, the investigation of cell interactions with a solid boundary illustrated an asymmetry for the different swimming modes; in contrast to the push and pull modes, the curvature of runs in wrapped mode was not affected by the solid boundary. This finding suggested that having a multi-mode swimming strategy may provide further versatility to react to environmental constraints. Then we determined how P. putida navigates toward chemoattractants, i.e. its chemotaxis strategies. We found that individual run modes show distinct chemotactic responses in nutrition gradients. In particular, P. putida cells exhibited an asymmetry in their chemotactic responsiveness; the wrapped mode (slow swimming mode) was affected by the chemoattractant, whereas the push mode (fast swimming mode) was not. These results can be seen as a starting point to understand more complex chemotaxis strategies of multi-mode swimmers going beyond the well-known paradigm of Escherichia coli, that exhibits only one swimming mode. Finally we considered the cell dynamics in a dense population. Besides physical interactions with their neighbors, cells communicate their activities and orchestrate their population behaviors via quorum-sensing. Molecules that are secreted to the surrounding by the bacterial cells, act as signals and regulate the cell population behaviour. We studied P. putida’s motility in a dense population by exposing the cells to environments with different concentrations of chemical signals. We found that higher amounts of chemical signals in the surrounding influenced the single-cell behaviourr, suggesting that cell-cell communications may also affect the flagellar dynamics. In summary, this dissertation studies the dynamics of a bacterium with a multi-mode swimming tactic and how it is affected by the surrounding environment using microscopy imaging. The detailed description of the bacterial motility in fundamental bacterial processes can provide new insights into the ecology of microorganisms. N2 - Bakterien gehören zu den am weitesten verbreiteten Mikroorganismen mit einer essentiellen Bedeutung in vielen biologischen und okologischen Prozessen. Bakterien können entweder als unabhängige Individuen oder in organisierten Gemeinschaften leben. Auf dem Level einer einzelnen Zelle sind Interaktionen zwischen Bakterien, ihren Nachbarn und des umgebenden physikalischen und chemischen Umwelt die Grundlage von mikrobiellen Prozessen. Mikroskopische Bildgebungs techniken bieten attraktive und vielversprechende Möglichkeiten den Einfluß dieses Interaktionen auf die Dynamik von Bakterien zu untersuchen. Das ziel dieser Dissertation ist es, vier fundamentale bakterielle Prozesse mittels Lebendzell-Mikroskopie besser zu verstehen – die Einzelzellbewegung, die Chemotaxis, die Wechselwirkungen der Bakterien mit der Umgebung und ihre Kommunikation mit Nachbarzellen. Durch die Untersuchung dieser Prozesse konnten wir das Wissen über die bisher ungeklärten Mechanismen der bakteriellen Interaktionen erweitern. Als Erstes untersuchten wir die Fortbewegung des Bodenbakteriums Pseudomonas putida (P. putida), welches mit Hilfe eines Flagellenantriebs schwimmt und eine komplexe multi-mode Schwimmstrategie aufweist. Kürzlich wurde veröffentlich, dass P. putida mehrere unterschiedliche Schwimmmodi besitzt – die Flagellen können den Zellkörper nach vorne drücken (push) oder ziehen (pull) oder sich um ihn wickeln (wrap). Unter Verwendung einer neuen Methode, der kombinierten Phasenkontrast- und Fluoreszenzmikroskopie, konnten die Schwimmmodi (push, pull oder wrap) für jede Schwimmphase automatisch aufgenommen werden, was eine vollständige Schwimmstatistik des multi-mode Schwimmers lieferte. Weiterhin zeigte die Untersuchung von Interaktionen mit einer festen Grenzschicht eine Asymmetrie bezüglich der verschiedenen Schwimmmodi. Im Gegensatz zu push und pull, der wrapped Modus nicht durch die feste Grenzschicht beeinflusst. Diese Ergebnisse lassen vermuten, dass eine multi-mode Schwimmstrategie dem Bakterium weitere möglichkeiten bietet, sich an die Umgebungsbedingungen anzupassen. Als Nächstes haben wir bestimmt, wie P. putida in Richtung eines Lockstoffes navigiert (Chemotaxis). Wir haben herausgefunden, dass einzelne Schwimmmodi eine unterschiedliche chemotaktische Antwort in Nährstoff-gradienten zeigen. P. putida besitzt eine Asymmetrie in seiner chemotaktischen Ansprechbarkeit: der wrapped Modus (langsamer Schwimmmodus) wird vom Lockstoff beeinflusst, der push Modus (schneller Schwimmmodus) hingegen nicht. Diese Ergebnisse können als Ausgangspunkt gesehen werden, um komplexere Chemotaxisstrategien von mulit-mode Schwimmern zu verstehen, die über das bekannte Musterbeispiel Escherichia coli hinaus gehen, des nur einen schwimmmodus aufweist. schließend haben wir die Zelldynamik in dichten Kulturen untersucht. Neben den physikalischen Interaktionen mit den Nachbarzellen, kommunizieren zellen ihre Aktivitäten und organisieren ihr Populationsverhalten über quorum sensing. Moleküle, die von den Bakterienzellen in die Umgebung sekretiert werden, wirken als Signale und regulieren das Verhalten der Zellpopulation. Wir haben die Bewegung von P. putida in hoher Zelldichte untersucht, indem wir die Zellen unterschiedlichen Konzentrationen dieses Moleküle aussetzten. Wir haben festgestellt, dass größere Mengen dieser signalstoffe in der Umgebung die Einzelzelldynamik beeinflusst haben. Dies lässt uns vermuten, dass sich die Zell-Zell-Kommunikation auch auf die Flagellendynamik auswirkt. Zusammenfassend zeigt diese Dissertation mittels Mikroskopie die Dynamik von einem Bakterium mit multi-mode Schwimmstrategie und wie die umgebende Umwelt diese Dynamik beeinflußt. Die detaillierte Beschreibung der Bakterienmotilität in grundlegenden bakteriellen Prozessen kann neue Erkenntnisse für die ökologie der Mikroorganismen bringen. T2 - Bewegungsstrategien von bakteriellenmulti-mode Schwimmern KW - Single-cell motility KW - Einzelzellbewegung KW - Chemotaxis KW - Chemotaxis KW - Flagellen KW - Flagella KW - Bacteria KW - Bakterien Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475806 ER - TY - THES A1 - Mogrovejo Arias, Diana Carolina T1 - Assessment of the frequency and relevance of potentially pathogenic phenotypes in microbial isolates from Arctic environments N2 - The Arctic environments constitute rich and dynamic ecosystems, dominated by microorganisms extremely well adapted to survive and function under severe conditions. A range of physiological adaptations allow the microbiota in these habitats to withstand low temperatures, low water and nutrient availability, high levels of UV radiation, etc. In addition, other adaptations of clear competitive nature are directed at not only surviving but thriving in these environments, by disrupting the metabolism of neighboring cells and affecting intermicrobial communication. Since Arctic microbes are bioindicators which amplify climate alterations in the environment, the Arctic region presents the opportunity to study local microbiota and carry out research about interesting, potentially virulent phenotypes that could be dispersed into other habitats around the globe as a consequence of accelerating climate change. In this context, exploration of Arctic habitats as well as descriptions of the microbes inhabiting them are abundant but microbial competitive strategies commonly associated with virulence and pathogens are rarely reported. In this project, environmental samples from the Arctic region were collected and microorganisms (bacteria and fungi) were isolated. The clinical relevance of these microorganisms was assessed by observing the following virulence markers: ability to grow at a range of temperatures, expression of antimicrobial resistance and production of hemolysins. The aim of this project is to determine the frequency and relevance of these characteristics in an effort to understand microbial adaptations in habitats threatened by climate change. The isolates obtained and described here were able to grow at a range of temperatures, in some cases more than 30 °C higher than their original isolation temperature. A considerable number of them consistently expressed compounds capable of lysing sheep and bovine erythrocytes on blood agar at different incubation temperatures. Ethanolic extracts of these bacteria were able to cause rapid and complete lysis of erythrocyte suspensions and might even be hemolytic when assayed on human blood. In silico analyses showed a variety of resistance elements, some of them novel, against natural and synthetic antimicrobial compounds. In vitro experiments against a number of antimicrobial compounds showed resistance phenotypes belonging to wild-type populations and some non-wild type which clearly denote human influence in the acquisition of antimicrobial resistance. The results of this project demonstrate the presence of virulence-associated factors expressed by microorganisms of natural, non-clinical environments. This study contains some of the first reports, to the best of our knowledge, of hemolytic microbes isolated from the Arctic region. In addition, it provides additional information about the presence and expression of intrinsic and acquired antimicrobial resistance in environmental isolates, contributing to the understanding of the evolution of relevant pathogenic species and opportunistic pathogens. Finally, this study highlights some of the potential risks associated with changes in the polar regions (habitat melting and destruction, ecosystem transition and re-colonization) as important indirect consequences of global warming and altered climatic conditions around the planet. N2 - Die Arktis ist ein reiches und dynamisches Ökosystem, welches von Mikroorganismen dominiert wird, die unter extremen Bedingungen überleben und funktionieren können. Eine Reihe physiologischer Anpassungen ermöglichen es der Mikrobiota, in diesem Lebensraum zu überdauern niedrige Temperaturen, geringe Wasser- und Nährstoffverfügbarkeit, hohe UV-Strahlung, usw. standzuhalten. Andere Fähigkeiten zielen darauf ab, sich einen Konkurrenzvorteil zu verschaffen, indem sie mit antimikrobiellen Substanzen benachbarte Mikroorganismen stören und die intermikrobielle Kommunikation beeinflussen. Arktische Mikroorganismen sind Bioindikatoren, die Klimaveränderungen anzeigen können. Die Arktis bietet Möglichkeiten, die lokale Mikrobiota zu untersuchen, um Rückschlüsse auf den Klimawandel zu ziehen. Insbesondere Forschung über potenziell pathogene Phänotypen, die infolge der Beschleunigung des Klimawandels in andere Lebensräume auf der ganzen Welt verteilt werden könnten, ist hier von herausragender Bedeutung. In diesem Zusammenhang gibt es zahlreiche Untersuchungen zur Erforschung arktischer Lebensräume sowie Beschreibungen der in ihnen lebenden Mikroben, während über bakterielle Konkurrenzstrategien, die üblicherweise mit Virulenz und Krankheitserregern verbunden sind, bisher wenig geforscht wurde. In diesem Projekt wurden Umweltproben aus der Arktis entnommen und Bakterien und Pilze isoliert. Die klinische Relevanz dieser Mikroorganismen wurde durch Untersuchung der folgenden Virulenzmarker bewertet: Fähigkeit, in einem bestimmten Temperaturbereich zu wachsen, Expression von Antibiotikaresistenz und Produktion von Hämolysinen. Ziel dieses Projekts war es, das Vorkommen dieser Eigenschaften zu bestimmen, um die mikrobiellen Anpassungen in vom Klimawandel bedrohten Lebensräumen zu verstehen. Die beschriebenen Bakterienisolate konnten in einem relevanten Temperaturbereich wachsen, in einigen Fällen von mehr als 30 °C höher als ihre ursprüngliche Isolationstemperatur. Eine beträchtliche Anzahl der Isolate exprimierte konsistent Verbindungen, die Schaf- und Rindererythrozyten auf Blutagar bei verschiedenen Inkubationstemperaturen lysieren können. Die Extrakte einiger dieser Bakterien konnten eine schnelle und vollständige Lyse von Schaf- und Rindererythrozytensuspensionen verursachen und sind möglicherweise sogar hämolytisch gegenüber humanem Blut. Darüber hinaus zeigten Genomanalysen eine Vielzahl von Resistenzgenen gegen natürliche und synthetische antimikrobielle Verbindungen, einige neuartige. In-vitro-Experimente zeigten, dass einige Resistenzphänotypen zu Wildtyp-Populationen während andere zu Nicht-Wildtyp gehören, was auf einen menschlichen Einfluss auf den Erwerb von Antibiotikaresistenzen in der Umwelt eindeutig hindeutet. Die Ergebnisse dieses Projekts zeigen das Vorhandensein von Virulenz-assoziierten Faktoren, die von Mikroorganismen natürlicher, nicht klinischer Umgebungen exprimiert werden. Diese Studie enthält nach unserem besten Wissen einige der ersten Berichte über hämolytische Mikroben, die aus der Arktis isoliert wurden. Darüber hinaus liefert es zusätzliche Informationen über das Vorhandensein und die Expression von intrinsischer und erworbener antimikrobieller Resistenz in Umweltisolaten und trägt zum Verständnis der Entwicklung relevanter pathogener Spezies und opportunistischer Pathogene bei. Schließlich beleuchtet diese Studie einige der potenziellen Risiken, die mit Veränderungen in den Polarregionen (Schmelzen und Zerstörung des Lebensraums, Übergang des Ökosystems und Wiederbesiedlung) als wichtige indirekte Folgen der globalen Erwärmung und veränderter klimatischer Bedingungen auf dem Planeten verbunden sind. KW - Arctic KW - pathogens KW - virulence KW - hemolysis KW - antimicrobial resistance KW - climate change KW - bacteria KW - fungi KW - thermotolerance KW - antibiotic resistance KW - Arktis KW - Krankheitserreger KW - Virulenz KW - Hämolyse KW - Antibiotikaresistenz KW - Klimawandel KW - Bakterien KW - Pilze KW - Thermotoleranz Y1 - 2021 N1 - The author would like to acknowledge that the project leading to this doctoral dissertation has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 675546, research project “Microorganisms in Warming Arctic Environments - MicroArctic”. ER - TY - THES A1 - Stephan, Mareike Sophia T1 - A bacterial mimetic system to study bacterial inactivation and infection N2 - The emerging threat of antibiotic-resistant bacteria has become a global challenge in the last decades, leading to a rising demand for alternative treatments for bacterial infections. One approach is to target the bacterial cell envelope, making understanding its biophysical properties crucial. Specifically, bacteriophages use the bacterial envelope as an entry point to initiate infection, and they are considered important building blocks of new antibiotic strategies against drug-resistant bacteria.. Depending on the structure of the cell wall, bacteria are classified as Gram-negative and Gram-positive. Gram-negative bacteria are equipped with a complex cell envelope composed of two lipid membranes enclosing a rigid peptidoglycan layer. The synthesis machinery of the Gram-negative cell envelope is the target of antimicrobial agents, including new physical sanitizing procedures addressing the outer membrane (OM). It is therefore very important to study the biophysical properties of the Gram-negative bacterial cell envelope. The high complexity of the Gram-negative OM sets the demand for a model system in which the contribution of individual components can be evaluated separately. In this respect, giant unilamellar vesicles (GUVs) are promising membrane systems to study membrane properties while controlling parameters such as membrane composition and surrounding medium conditions. The aim of this work was to develop methods and approaches for the preparation and characterization of a GUV-based membrane model that mimics the OM of the Gram-negative cell envelope. A major component of the OM is the lipopolysaccharide (LPS) on the outside of the OM heterobilayer. The vesicle model was designed to contain LPS in the outer leaflet and lipids in the inner leaflet. Furthermore, the interaction of the prepared LPS-GUVs with bacteriophages was tested. LPS containing GUVs were prepared by adapting the inverted emulsion technique to meet the challenging properties of LPS, namely their high self-aggregation rate in aqueous solutions. Notably, an additional emulsification step together with the adaption of solution conditions was employed to asymmetrically incorporate LPS containing long polysaccharide chains into the artificial membranes. GUV membrane asymmetry was verified with a fluorescence quenching assay. Since the necessary precautions for handling the quenching agent sodium dithionite are often underestimated and poorly described, important parameters were tested and identified to obtain a stable and reproducible assay. In the context of varied LPS incorporation, a microscopy-based technique was introduced to determine the LPS content on individual GUVs and to directly compare vesicle properties and LPS coverage. Diffusion coefficient measurements in the obtained GUVs showed that increasing LPS concentrations in the membranes resulted in decreased diffusivity. Employing LPS-GUVs we could demonstrate that a Salmonella bacteriophage bound with high specificity to its LPS receptor when presented at the GUV surface, and that the number of bound bacteriophages scaled with the amount of presented LPS receptor. In addition to binding, the bacteriophages were able to eject their DNA into the vesicle lumen. LPS-GUVs thus provide a starting platform for bottom-up approaches for the generation of more complex membranes, in which the effects of individual components on the membrane properties and the interaction with antimicrobial agents such as bacteriophages could be explored. N2 - Die wachsende Bedrohung durch antibiotikaresistente Bakterien ist in den letzten Jahrzehnten zu einer globalen Herausforderung geworden, was zu einer steigenden Nachfrage nach alternativen Behandlungsmethoden für bakterielle Infektionen geführt hat. Ein Ansatz besteht darin, die bakterielle Zellhülle anzugreifen, weshalb das Verständnis ihrer biophysikalischen Eigenschaften entscheidend ist. Insbesondere Bakteriophagen, Viren, die Bakterien infizieren, nutzen die Bakterienhülle als ersten Angriffspunkt für die Infektion und gelten als wichtige Bausteine für neue Antibiotikastrategien gegen arzneimittelresistente Bakterien. Je nach Struktur der Zellwand werden Bakterien in gramnegative und grampositive Bakterien eingeteilt. Gramnegative Bakterien sind mit einer komplexen Zellhülle ausgestattet. Daher ist es sehr wichtig, ihre biophysikalischen Eigenschaften zu untersuchen. Die hohe Komplexität der äußeren Zellhülle, auch äußere Membran genannt, erfordert ein Modellsystem, in dem der Beitrag jeder einzelnen Komponente separat bewertet werden kann. In dieser Hinsicht sind Vesikel-basierte Modellsysteme sehr vielversprechend, da sie wichtige Eigenschaften der äußeren Membran simulieren können, aber in ihrer Komplexität stark reduziert und kontrollierbar sind. Ziel dieser Arbeit war es, Methoden und Ansätze für die Herstellung und Charakterisierung eines Vesikel-basierten Modells zu entwickeln, das die äußere Membran der gramnegativen bakteriellen Zellhülle nachahmt. Ein Hauptbestandteil der äußeren Membran ist Lipopolysaccharid (LPS), das asymmetrisch auf der Außenseite der äußeren Membran vorhanden ist. Das Vesikelmodell wurde so konzipiert, dass es außen LPS und innen Phospholipide enthält. Die Herstellung des beschriebenen Modellsystems erforderte einige Anpassungen, da die Hüllkomponente LPS eine hohe Tendenz zur Bildung von Selbstaggregaten aufweist. Durch die Einführung eines zusätzlichen Schrittes in das Standardprotokoll konnten Vesikel mit LPS-Inkorporation erzeugt werden. Es wurde sowohl die Menge als auch die asymmetrische Verteilung des LPS-Einbaus bestimmt. Mit Hilfe von Bakteriophagen sollte die biologische Wirkung des Modellsystems getestet werden. Es wurde gezeigt, dass Bakteriophagen, die spezifisch LPS erkennen und binden, nach Zugabe zum Modellsystem die Vesikel binden und ihr genetisches Material in das Vesikel-Innere injizieren. Die hier beschriebenen LPS-haltigen Vesikel können als Ausgangsplattform für Bottom-up-Ansätze zur Herstellung komplexerer Membranen verwendet werden. Mit diesen komplexeren, aber kontrollierbaren Systemen lassen sich die Auswirkungen einzelner Komponenten der bakteriellen Zellhülle auf die Eigenschaften der Zellhülle sowie ihre Wechselwirkung mit antimikrobiellen Wirkstoffen wie Bakteriophagen untersuchen. KW - Bakterien KW - Bakteriophagen KW - Zellmembran KW - Vesikel KW - Konfokale Mikroskopie KW - Lipopolysaccharid KW - gramnegativ KW - bacteria KW - bacteriophage KW - cell membrane KW - vesicle KW - confocal microscopy KW - lipopolysaccharide KW - gram-negative Y1 - 2023 ER -