TY - THES A1 - Koikkarah Aji, Amit T1 - Quantitative sub cellular characterization of Hantavirus structural proteins T1 - Quantitativ Subzellulär Charakterisierung Von Hantavirus-Strukturproteine. N2 - Hantaviruses (HVs) are a group of zoonotic viruses that infect human beings primarily through aerosol transmission of rodent excreta and urine samplings. HVs are classified geographically into: Old World HVs (OWHVs) that are found in Europe and Asia, and New World HVs (NWHVs) that are observed in the Americas. These different strains can cause severe hantavirus diseases with pronounced renal syndrome or severe cardiopulmonary system distress. HVs can be extremely lethal, with NWHV infections reaching up to 40 % mortality rate. HVs are known to generate epidemic outbreaks in many parts of the world including Germany, which has seen periodic HV infections over the past decade. HV has a trisegmented genome. The small segment (S) encodes the nucleocapsid protein (NP), the middle segment (M) encodes the glycoproteins (GPs) Gn and Gc which forms up to tetramers and primarily monomers \& dimers upon independent expression respectively and large segment (L) encodes RNA dependent RNA polymerase (RdRp). Interactions between these viral proteins are crucial in providing mechanistic insights into HV virion development. Despite best efforts, there continues to be lack of quantification of these associations in living cells. This is required in developing the mechanistic models for HV viral assembly. This dissertation focuses on three key questions pertaining to the initial steps of virion formation that primarily involves the GPs and NP. The research investigations in this work were completed using Fluorescence Correlation Spectroscopy (FCS) approaches. FCS is frequently used in assessing the biophysical features of bio-molecules including protein concentration and diffusion dynamics and circumvents the requirement of protein overexpression. FCS was primarily applied in this thesis to evaluate protein multimerization, at single cell resolution. The first question addressed which GP spike formation model proposed by Hepojoki et al.(2010) appropriately describes the evidence in living cells. A novel in cellulo assay was developed to evaluate the amount of fluorescently labelled and unlabeled GPs upon co-expression. The results clearly showed that Gn and Gc initially formed a heterodimeric Gn:Gc subunit. This sub-unit then multimerizes with congruent Gn:Gc subunits to generate the final GP spike. Based on these interactions, models describing the formation of GP complex (with multiple GP spike subunits) were additionally developed. HV GP assembly primarily takes place in the Golgi apparatus (GA) of infected cells. Interestingly, NWHV GPs are hypothesized to assemble at the plasma membrane (PM). This led to the second research question in this thesis, in which a systematic comparison between OWHV and NWHV GPs was conducted to validate this hypothesis. Surprisingly, GP localization at the PM was congruently observed with OWHV and NWHV GPs. Similar results were also discerned with OWHV and NWHV GP localization in the absence of cytoskeletal factors that regulate HV trafficking in cells. The final question focused on quantifying the NP-GP interactions and understanding their influence of NP and GP multimerization. Gc mutlimers were detected in the presence of NP and complimented by the presence of localized regions of high NP-Gc interactions in the perinuclear region of living cells. Gc-CT domain was shown to influence NP-Gc associations. Gn, on the other hand, formed up to tetrameric complexes, independent from the presence of NP. The results in this dissertation sheds light on the initial steps of HV virion formation by quantifying homo and heterotypic interactions involving NP and GPs, which otherwise are very difficult to perform. Finally, the in cellulo methodologies implemented in this work can be potentially extended to understand other key interactions involved in HV virus assembly. N2 - Hantaviren (HVs) gehören zu einer Gruppe von Zoonosenviren, die den Menschen hauptsächlich über Aerosolübertragung von Nagetierausscheidungen und Urinproben infizieren. HVs werden geografisch unterteilt in: Alte Welt-HVs (OWHVs), die in Europa und Asien vorkommen, und Neue Welt-HVs (NWHVs), die auf dem amerikanischen Kontinent beobachtet werden. Diese verschiedenen Stämme können schwere Krankheiten verursachen, wie hämorrhagisches Fieber mit Nierensyndrom oder schwere Herz-Lungen-Störungen. HVs haben eine hohe Sterblichkeitsrate, wobei NWHV-Infektionen eine Sterblichkeitsrate von bis zu 40 % erreichen. Es ist bekannt, dass HVs in vielen Teilen der Welt epidemische Ausbrüche verursachen können, so auch in Deutschland, wo in den letzten zehn Jahren regelmäßig HV-Infektionen vorkamen. HV besitzt ein trisegmentiertes Genom. Das kleine Segment (S) kodiert das Nukleokapsidprotein (NP), das mittlere Segment (M) kodiert die Glykoproteine (GPs) Gn und Gc, die bei unabhängiger Expression Tetramere und Dimere bilden, und das große Segment (L) kodiert die RNA-abhängige RNA-Polymerase (RdRp). Die Wechselwirkungen zwischen diesen viralen Proteinen sind von entscheidender Bedeutung für die Aufklärung der Mechanismen der HV-entwicklung. Trotz aller Bemühungen fehlt es nach wie vor an der Quantifizierung dieser Verbindungen in lebenden Zellen. Dies ist für die Entwicklung komplexer Modelle für den Aufbau von HV erforderlich. Diese Arbeit konzentriert sich auf drei Schlüsselfragen im Zusammenhang mit den ersten Phasen der Virionenbildung, an denen hauptsächlich die GPs und NP beteiligt sind. Die Forschungsaufgaben in dieser Arbeit wurden mit Hilfe der Fluoreszenzkorrelationspektroskopie (FCS) untersucht. Die FCS wird häufig zur Bewertung der biophysikalischen Eigenschaften von Biomolekülen, einschließlich der Proteinkonzentration und Diffusionsdynamik, eingesetzt und macht eine Überexpression von Proteinen überflüssig. In dieser Arbeit wurde FFS in erster Linie eingesetzt, um die Multimerisierung von Proteinen bei Einzelzellauflösung zu untersuchen. Die erste Frage lautete, welches das von Hepojoki et al. (2010) vorgeschlagene Modell der GP-Spike-Bildung den Vorgang in lebenden Zellen adäquat beschreibt. Es wurde ein neuartiger in cellulo-Assay entwickelt, um die Konzentration von fluoreszenzmarkierten und unmarkierten GPs bei der Ko-expression zu bestimmen. Die Ergebnisse zeigten deutlich, dass Gn und Gc zunächst eine heterodimere Gn:Gc-Untereinheit bilden. Diese Untereinheit multimerisiert dann mit kongruenten Gn:Gc-Untereinheiten, um den finalen GP-Spike zu erzeugen. Auf der Grundlage dieser Interaktionen wurden zusätzlich Modelle entwickelt, die die Bildung des GP-Komplexes (mit mehreren GP-Spike-Untereinheiten) beschreiben. Die HV-GP-Assemblierung findet hauptsächlich im Golgi-Apparat (GA) von infizierten Zellen statt. Interessanterweise wird angenommen, dass NWHV GPs an der Plasmamembran (PM) assembliert werden. Dies führte zur zweiten Frage dieser Arbeit, bei der ein systematischer Vergleich zwischen OWHV- und NWHV-GP durchgeführt wurde, um diese Hypothese zu bestätigen. Überraschenderweise wurde die GP-Lokalisierung an der PM bei OWHV- und NWHV-GPs gleichermaßen beobachtet. Ähnliche Ergebnisse wurden auch bei der Lokalisierung von OWHV- und NWHV-GP in Abwesenheit von zytoskelettalen Faktoren festgestellt, die die HV-Infektion regulieren. Die letzte Frage dieser Arbeit konzentrierte sich auf die Quantifizierung der NP-GP-Wechselwirkungen und das Verständnis ihres Einflusses auf die Multimerisierung von NP und GPs. Gc-Multimere, die in Gegenwart von NP nachgewiesen wurden, wurden durch das Vorhandensein von perinukleär lokalisierten Regionen mit starken NP-Gc-Wechselwirkungen in lebenden Zellen komplettiert. Es wurde gezeigt, dass die Gc-CT-Domäne die NP-Gc-Assoziationen beeinflusst. Gn hingegen bildete unabhängig von der Anwesenheit von NP tetramerische Komplexe. Die Ergebnisse dieser Arbeit geben Aufschluss über die ersten Phasen der HV-Assemblierung, indem sie die Homo- und Hetero-Interaktionen zwischen NP und GPs quantifizieren, was sonst nur sehr schwer möglich ist. Schließlich können die in dieser Arbeit implementierten in cellulo-Methoden potenziell erweitert werden, um andere Schlüsselinteraktionen zu verstehen, die an der HV-Assemblierung beteiligt sind. KW - Hantavirus KW - fluorescence microscopy KW - fluorescence correlation spectroscopy KW - protein multimerization KW - virus assembly KW - single cell imaging KW - Hantaviren KW - Fluoreszenzmikroskopie KW - Fluoreszenzkorrelationspektroskopie KW - Virionenbildung KW - Proteinmultimerisierung Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-586612 ER - TY - THES A1 - Pitzen, Valentin T1 - Weitergeführte funktionelle Charakterisierung des centrosomalen Proteins Cep192 und Untersuchung der Topologie des Centrosoms in Dictyostelium Amöben T1 - Functional Characterization of the Centrosomal Protein Cep192 and Investigation of the Topology of the Centrosome in Dictyostelium amoeba N2 - Das Centrosom von Dictyostelium ist acentriolär aufgebaut, misst ca. 500 nm und besteht aus einer dreischichten Core-Struktur mit umgebender Corona, an der Mikrotubuli nukleieren. In dieser Arbeit wurden das centrosomale Protein Cep192 und mögliche Interaktionspartner am Centrosom eingehend untersucht. Die einleitende Lokalisationsuntersuchung von Cep192 ergab, dass es während der gesamten Mitose an den Spindelpolen lokalisiert und im Vergleich zu den anderen Strukturproteinen der Core-Struktur am stärksten exprimiert ist. Die dauerhafte Lokalisation an den Spindelpolen während der Mitose wird für Proteine angenommen, die in den beiden identisch aufgebauten äußeren Core-Schichten lokalisieren, die das mitotische Centrosom formen. Ein Knockdown von Cep192 führte zur Ausbildung von überzähligen Mikrotubuli-organisierenden Zentren (MTOC) sowie zu einer leicht erhöhten Ploidie. Deshalb wird eine Destabilisierung des Centrosoms durch die verminderte Cep192-Expression angenommen. An Cep192 wurden zwei kleine Tags, der SpotH6- und BioH6-Tag, etabliert, die mit kleinen fluoreszierenden Nachweiskonjugaten markiert werden konnten. Mit den so getagten Proteinen konnte die hochauflösende Expansion Microscopy für das Centrosom optimiert werden und die Core-Struktur erstmals proteinspezifisch in der Fluoreszenzmikroskopie dargestellt werden. Cep192 lokalisiert dabei in den äußeren Core-Schichten. Die kombinierte Markierung von Cep192 und den centrosomalen Proteinen CP39 und CP91 in der Expansion Microscopy erlaubte die Darstellung des dreischichtigen Aufbaus der centrosomalen Core-Struktur, wobei CP39 und CP91 zwischen Cep192 in der inneren Core-Schicht lokalisieren. Auch die Corona wurde in der Expansion Microscopy untersucht: Das Corona-Protein CDK5RAP2 lokalisiert in räumlicher Nähe zu Cep192 in der inneren Corona. Ein Vergleich der Corona-Proteine CDK5RAP2, CP148 und CP224 in der Expansion Microscopy ergab unterscheidbare Sublokalisationen der Proteine innerhalb der Corona und relativ zur Core-Struktur. In Biotinylierungsassays mit den centrosomalen Core-Proteinen CP39 und CP91 sowie des Corona-Proteins CDK5RAP2 konnte Cep192 als möglicher Interaktionspartner identifiziert werden. Die Ergebnisse dieser Arbeit zeigen die wichtige Funktion des Proteins Cep192 im Dictyostelium-Centrosom und ermöglichen durch die Kombination aus Biotinylierungsassays und Expansion Microscopy der untersuchten Proteine ein verbessertes Verständnis der Topologie des Centrosoms. N2 - The Dictyostelium centrosome contains no centrioles and has a diameter of approx. 500 nm. It consists of a three layered core structure and a surrounding corona, which nucleates microtubules. This work focusses on the centrosomal protein Cep192 and potential interactors at the centrosome. Localization studies showed, that Cep192 is a permanent resident at the spindle poles during mitosis and that, compared to other centrosomal core proteins, Cep192 is expressed at the highest level. The permanent residence at the spindle poles throughout mitosis is assumed for proteins which localize to the outer core layers, which form the mitotic centrosome. A knockdown of Cep192 resulted in supernumerary microtubule organizing centers (MTOC) and a slightly higher ploidy. Due to the phenotype, a destabilization of the centrosome caused by the reduced Cep192 expression is assumed. Cep192 was fused to the newly established short tags BioH6 and SpotH6, which are recognized by small fluorescently labelled probes. The tagged proteins were used for superresolution expansion microscopy. Superresolution expansion microscopy was optimized for the centrosome and allowed the protein specific resolving of the core structure for the first time. Cep192 localizes to the outer core layers. Combination of tagged proteins nicely mirrored all three core layers. CP39 and CP91 localize inbetween Cep192 in the inner core layer. Corona proteins were included in the expansion microscopy: the corona protein CDK5RAP2 comes into close proximity of Cep192 and localizes to the inner corona. A comparison with CP148 and CP224, two other corona proteins, revealed a distinct localization of the proteins within the corona and relatively to the core structure. Applied biotinylase assays with the core proteins CP39 and CP91, as well with the corona protein CDK5RAP2 revealed Cep192 as a possible interaction partner of all three proteins. The results of this work show the important function of Cep192 at the Dictyostelium centrosome and through the biotinylase assay and expansion microscopy data shed a light on the refined Dictyostelium centrosome topology. KW - Centrosom KW - Fluoreszenzmikroskopie KW - expansion microscopy KW - Cep192 KW - CDK5RAP2 KW - fluorescence microscopy KW - Cep192 KW - CDK5RAP2 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-548891 ER - TY - JOUR A1 - Petazzi, Roberto Arturo A1 - Koikkarah Aji, Amit A1 - Tischler, Nicole D. A1 - Chiantia, Salvatore T1 - Detection of envelope glycoprotein assembly from old world hantaviruses in the Golgi apparatus of living cells JF - Journal of virology N2 - Hantaviruses are emerging pathogens that occasionally cause deadly outbreaks in the human population. While the structure of the viral envelope has been characterized with high precision, protein-protein interactions leading to the formation of new virions in infected cells are not fully understood. We used quantitative fluorescence microscopy (i.e., number and brightness analysis and fluorescence fluctuation spectroscopy) to monitor the interactions that lead to oligomeric spike complex formation in the physiological context of living cells. To this aim, we quantified protein-protein interactions for the glycoproteins Gn and Gc from Puumala and Hantaan orthohantaviruses in several cellular models. The oligomerization of each protein was analyzed in relation to subcellular localization, concentration, and the concentration of its interaction partner. Our results indicate that, when expressed separately, Gn and Gc form, respectively, homo-tetrameric and homo-dimeric complexes, in a concentration-dependent manner. Site-directed mutations or deletion mutants showed the specificity of their homotypic interactions. When both glycoproteins were coexpressed, we observed in the Golgi apparatus clear indication of GnGc interactions and the formation of Gn-Gc multimeric protein complexes of different sizes, while using various labeling schemes to minimize the influence of the fluorescent tags. Such large glycoprotein multimers may be identified as multiple Gn viral spikes interconnected via Gc-Gc contacts. This observation provides the possible first evidence for the initial assembly steps of the viral envelope within this organelle, and does so directly in living cells.
IMPORTANCE In this work, we investigate protein-protein interactions that drive the assembly of the hantavirus envelope. These emerging pathogens have the potential to cause deadly outbreaks in the human population. Therefore, it is important to improve our quantitative understanding of the viral assembly process in infected cells, from a molecular point of view. By applying advanced fluorescence microscopy methods, we monitored the formation of viral spike complexes in different cell types. Our data support a model for hantavirus assembly according to which viral spikes are formed via the clustering of hetero-dimers of the two viral glycoproteins Gn and Gc. Furthermore, the observation of large Gn-Gc hetero-multimers provide the possible first evidence for the initial assembly steps of the viral envelope, directly in the Golgi apparatus of living cells. KW - fluorescence fluctuation microscopy KW - number and brightness KW - virus KW - assembly KW - fluorescence correlation spectroscopy KW - protein-protein KW - interaction KW - fluorescence microscopy KW - fluorescent image analysis Y1 - 2021 U6 - https://doi.org/10.1128/JVI.01238-20 SN - 1098-5514 VL - 95 IS - 4 PB - American Society for Microbiology CY - Baltimore, Md. ER - TY - GEN A1 - Tzoneva, Rumiana A1 - Stoyanova, Tihomira A1 - Petrich, Annett A1 - Popova, Desislava A1 - Uzunova, Veselina A1 - Albena, Momchilova A1 - Chiantia, Salvatore T1 - Effect of Erufosine on Membrane Lipid Order in Breast Cancer Cell Models T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Alkylphospholipids are a novel class of antineoplastic drugs showing remarkable therapeutic potential. Among them, erufosine (EPC3) is a promising drug for the treatment of several types of tumors. While EPC3 is supposed to exert its function by interacting with lipid membranes, the exact molecular mechanisms involved are not known yet. In this work, we applied a combination of several fluorescence microscopy and analytical chemistry approaches (i.e., scanning fluorescence correlation spectroscopy, line-scan fluorescence correlation spectroscopy, generalized polarization imaging, as well as thin layer and gas chromatography) to quantify the effect of EPC3 in biophysical models of the plasma membrane, as well as in cancer cell lines. Our results indicate that EPC3 affects lipid–lipid interactions in cellular membranes by decreasing lipid packing and increasing membrane disorder and fluidity. As a consequence of these alterations in the lateral organization of lipid bilayers, the diffusive dynamics of membrane proteins are also significantly increased. Taken together, these findings suggest that the mechanism of action of EPC3 could be linked to its effects on fundamental biophysical properties of lipid membranes, as well as on lipid metabolism in cancer cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1000 KW - alkylphospholipids KW - fluorescence microscopy KW - fluorescence correlation spectroscopy KW - lipids KW - plasma membrane KW - cancer KW - lipid–lipid interactions KW - membrane microdomains KW - membrane biophysics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-477056 SN - 1866-8372 IS - 1000 ER - TY - JOUR A1 - Tzoneva, Rumiana A1 - Stoyanova, Tihomira A1 - Petrich, Annett A1 - Popova, Desislava A1 - Uzunova, Veselina A1 - Momchilova, Albena A1 - Chiantia, Salvatore T1 - Effect of Erufosine on Membrane Lipid Order in Breast Cancer Cell Models JF - Biomolecules N2 - Alkylphospholipids are a novel class of antineoplastic drugs showing remarkable therapeutic potential. Among them, erufosine (EPC3) is a promising drug for the treatment of several types of tumors. While EPC3 is supposed to exert its function by interacting with lipid membranes, the exact molecular mechanisms involved are not known yet. In this work, we applied a combination of several fluorescence microscopy and analytical chemistry approaches (i.e., scanning fluorescence correlation spectroscopy, line-scan fluorescence correlation spectroscopy, generalized polarization imaging, as well as thin layer and gas chromatography) to quantify the effect of EPC3 in biophysical models of the plasma membrane, as well as in cancer cell lines. Our results indicate that EPC3 affects lipid–lipid interactions in cellular membranes by decreasing lipid packing and increasing membrane disorder and fluidity. As a consequence of these alterations in the lateral organization of lipid bilayers, the diffusive dynamics of membrane proteins are also significantly increased. Taken together, these findings suggest that the mechanism of action of EPC3 could be linked to its effects on fundamental biophysical properties of lipid membranes, as well as on lipid metabolism in cancer cells. KW - alkylphospholipids KW - fluorescence microscopy KW - fluorescence correlation spectroscopy KW - lipids KW - plasma membrane KW - cancer KW - lipid–lipid interactions KW - membrane microdomains KW - membrane biophysics Y1 - 2020 U6 - https://doi.org/10.3390/biom10050802 SN - 2218-273X VL - 10 IS - 5 PB - MDPI CY - Basel ER - TY - THES A1 - Breitenstein, Michael T1 - Ortsaufgelöster Aufbau von DNA-Nanostrukturen auf Glasoberflächen T1 - Assembly of DNA nanostructures on glass surfaces N2 - Im Fokus dieser Arbeit stand der Aufbau einer auf DNA basierenden Nanostruktur. Der universelle Vier-Buchstaben-Code der DNA ermöglicht es, Bindungen auf molekularer Ebene zu adressieren. Die chemischen und physikalischen Eigenschaften der DNA prädestinieren dieses Makromolekül für den Einsatz und die Verwendung als Konstruktionselement zum Aufbau von Nanostrukturen. Das Ziel dieser Arbeit war das Aufspannen eines DNA-Stranges zwischen zwei Fixpunkten. Hierfür war es notwendig, eine Methode zu entwickeln, welche es ermöglicht, Funktionsmoleküle als Ankerelemente ortsaufgelöst auf eine Oberfläche zu deponieren. Das Deponieren dieser Moleküle sollte dabei im unteren Mikrometermaßstab erfolgen, um den Abmaßen der DNA und der angestrebten Nanostruktur gerecht zu werden. Das eigens für diese Aufgabe entwickelte Verfahren zum ortsaufgelösten Deponieren von Funktionsmolekülen nutzt das Bindungspaar Biotin-Neutravidin. Mit Hilfe eines Rasterkraftmikroskops (AFM) wurde eine zu einem „Stift“ umfunktionierte Rasterkraftmikroskopspitze so mit der zu deponierenden „Tinte“ beladen, dass das Absetzen von Neutravidin im unteren Mikrometermaßstab möglich war. Dieses Neutravidinmolekül übernahm die Funktion als Bindeglied zwischen der biotinylierten Glasoberfläche und dem eigentlichen Adressmolekül. Das somit generierte Neutravidin-Feld konnte dann mit einem biotinylierten Adressmolekül durch Inkubation funktionalisiert werden. Namensgebend für dieses Verfahren war die Möglichkeit, Neutravidin mehrmals zu deponieren und zu adressieren. Somit ließ sich sequenziell ein Mehrkomponenten-Feld aufbauen. Die Einschränkung, mit einem AFM nur eine Substanz deponieren zu können, wurde so umgangen. Ferner mußten Ankerelemente geschaffen werden, um die DNA an definierten Punkten immobilisieren zu können. Die Bearbeitung der DNA erfolgte mit molekularbiologischen Methoden und zielte darauf ab, einen DNA-Strang zu generieren, welcher an seinen beiden Enden komplementäre Adressequenzen enthält, um gezielt mit den oberflächenständigen Ankerelementen binden zu können. Entsprechend der Geometrie der mit dem AFM erzeugten Fixpunkte und den oligonukleotidvermittelten Adressen kommt es zur Ausbildung einer definierten DNA-Struktur. Mit Hilfe von fluoreszenzmikroskopischen Methoden wurde die aufgebaute DNA-Nanostruktur nachgewiesen. Der Nachweis der nanoskaligen Interaktion von DNA-bindenden Molekülen mit der generierten DNA-Struktur wurde durch die Bindung von PNA (peptide nucleic acid) an den DNA-Doppelstrang erbracht. Diese PNA-Bindung stellt ihrerseits ein funktionales Strukturelement im Nanometermaßstab dar und wird als Nanostrukturbaustein verstanden. N2 - The main aim of this work was the development of a DNA-based nanostructure. The universal four-letter code of DNA allows addressing bonds at the molecular level. The chemical and physical property of DNA makes this macromolecule an ideal candidate as a construction element for nanostructures. The aim of this work was to span a DNA strand between two fixed points. For this purpose it was necessary to develop a method which makes it possible to deposit functional molecules as anchoring elements with highly spatial resolution on a surface. These molecules should be immobilized on the lower micrometer scale to meet the requirements of the desired nanostructure. The method that has been developed for this task, which enables to deposit functional molecules, uses the binding pair biotin-neutravidin. Using the tip of an atomic force microscope (AFM), which can be uses like a pen, it was possible to deposit neutravidin on the lower micrometer scale. This neutravidin molecule is the linking element between the biotinylated glass surface and the actual address molecule. The thus generated neutravidin field could then be functionalized with a biotinylated molecule by incubation. The method has been published as sequential spotting method because it enables a sequential functionalization of neutravidin after it has been deposited. It was so possible to build up a multi-component array. The limitation of being able to deposit only one single substance with an AFM has been circumvented. It also was necessary to create anchor elements in order to immobilize the DNA at defined positions. The processing of the DNA was carried out using molecular biological methods and aimed at generating a DNA strand, which at both ends has a complementary sequence for binding to the surface bound anchor elements. The defined structure is a result of the geometry of the fixed points, generated by the AFM. Using fluorescence microscopy, the constructed DNA nanostructure was detected. The proof of the interaction of DNA-binding molecules with the DNA structure was carried out by the binding of PNA (peptide nucleic acid), which is capable of binding to double stranded DNA. The PNA and its DNA-interaction is a functional building block in the nanometer scale and can be regarded as a promising nanostructure. KW - Nanostruktur KW - DNA KW - Rasterkraftmikroskop KW - Fluoreszenzmikroskopie KW - Oberflächenfunktionalisierung KW - nanostructure KW - DNA KW - atomic force microscope KW - fluorescence microscopy KW - surface chemistry Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-61857 ER -