TY - JOUR A1 - Schröder, Boris A1 - Seppelt, Ralf T1 - Analysis of pattern-process interactions based on landscape models - Overview, general concepts, and methodological issues JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Pattern-process analysis is one of the main threads in landscape ecological research. It aims at understanding the complex relationships between ecological processes and landscape patterns, identifying the underlying mechanisms and deriving valid predictions for scenarios of landscape change and its consequences. Today, various studies cope with these tasks through so called "landscape modelling" approaches. They integrate different aspects of heterogeneous and dynamic landscapes and model different driving forces, often using both statistical and process-oriented techniques. We identify two main approaches to deal with the analysis of pattern-process interactions: the first starts with pattern detection, pattern description and pattern analysis, the second with process description, simulation and pattern generation. Focussing on the interplay between these two approaches, landscape analysis and landscape modelling will improve our understanding of pattern-process interactions. The comparison of simulated and observed pattern is a prerequisite for both approaches. Therefore, we identify a set of quantitative, robust, and reproducible methods for the analysis of spatiotemporal patterns that is a starting point for a standard toolbox for ecologists as major future challenge and suggest necessary further methodological developments. (c) 2006 Elsevier B.V. All rights reserved. KW - pattern-process interrelationship KW - landscape analysis KW - landscape modelling KW - simulation KW - inverse modelling KW - pattern description KW - wavelet analysis Y1 - 2006 U6 - https://doi.org/10.1016/j.ecolmodel.2006.05.036 SN - 0304-3800 VL - 199 IS - 4 SP - 505 EP - 516 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Giese, Holger A1 - Henkler, Stefan A1 - Hirsch, Martin T1 - A multi-paradigm approach supporting the modular execution of reconfigurable hybrid systems JF - Simulation : transactions of the Society for Modeling and Simulation International N2 - Advanced mechatronic systems have to integrate existing technologies from mechanical, electrical and software engineering. They must be able to adapt their structure and behavior at runtime by reconfiguration to react flexibly to changes in the environment. Therefore, a tight integration of structural and behavioral models of the different domains is required. This integration results in complex reconfigurable hybrid systems, the execution logic of which cannot be addressed directly with existing standard modeling, simulation, and code-generation techniques. We present in this paper how our component-based approach for reconfigurable mechatronic systems, MECHATRONIC UML, efficiently handles the complex interplay of discrete behavior and continuous behavior in a modular manner. In addition, its extension to even more flexible reconfiguration cases is presented. KW - code generation KW - hybrid systems KW - reconfigurable systems KW - simulation Y1 - 2011 U6 - https://doi.org/10.1177/0037549710366824 SN - 0037-5497 VL - 87 IS - 9 SP - 775 EP - 808 PB - Sage Publ. CY - London ER - TY - JOUR A1 - Sprinz, Detlef F. A1 - de Mesquita, Bruce Bueno A1 - Kallbekken, Steffen A1 - Stokman, Frans A1 - Saelen, Hakon A1 - Thomson, Robert T1 - Predicting Paris: Multi-Method Approaches to Forecast the Outcomes of Global Climate Negotiations JF - Politics and Governance N2 - We examine the negotiations held under the auspices of the United Nations Framework Convention of Climate Change in Paris, December 2015. Prior to these negotiations, there was considerable uncertainty about whether an agreement would be reached, particularly given that the world’s leaders failed to do so in the 2009 negotiations held in Copenhagen. Amid this uncertainty, we applied three different methods to predict the outcomes: an expert survey and two negotiation simulation models, namely the Exchange Model and the Predictioneer’s Game. After the event, these predictions were assessed against the coded texts that were agreed in Paris. The evidence suggests that combining experts’ predictions to reach a collective expert prediction makes for significantly more accurate predictions than individual experts’ predictions. The differences in the performance between the two different negotiation simulation models were not statistically significant. KW - climate policy KW - climate regime KW - expert survey KW - forecasting KW - global negotiations KW - Paris agreement KW - prediction KW - simulation Y1 - 2016 U6 - https://doi.org/10.17645/pag.v4i3.654 SN - 2183-2463 VL - 4 SP - 172 EP - 187 PB - Cogitatio Press CY - Lisbon ER - TY - JOUR A1 - Groth, Detlef T1 - Modeling a secular trend by Monte Carlo simulation of height biased migration in a spatial network JF - Anthropologischer Anzeiger : journal of biological and clinical anthropology ; Mitteilungsorgan der Gesellschaft für Anthropologie N2 - Background: In a recent Monte Carlo simulation, the clustering of body height of Swiss military conscripts within a spatial network with characteristic features of the natural Swiss geography was investigated. In this study I examined the effect of migration of tall individuals into network hubs on the dynamics of body height within the whole spatial network. The aim of this study was to simulate height trends. Material and methods: Three networks were used for modeling, a regular rectangular fishing net like network, a real world example based on the geographic map of Switzerland, and a random network. All networks contained between 144 and 148 districts and between 265-307 road connections. Around 100,000 agents were initially released with average height of 170 cm, and height standard deviation of 6.5 cm. The simulation was started with the a priori assumption that height variation within a district is limited and also depends on height of neighboring districts (community effect on height). In addition to a neighborhood influence factor, which simulates a community effect, body height dependent migration of conscripts between adjacent districts in each Monte Carlo simulation was used to re-calculate next generation body heights. In order to determine the direction of migration for taller individuals, various centrality measures for the evaluation of district importance within the spatial network were applied. Taller individuals were favored to migrate more into network hubs, backward migration using the same number of individuals was random, not biased towards body height. Network hubs were defined by the importance of a district within the spatial network. The importance of a district was evaluated by various centrality measures. In the null model there were no road connections, height information could not be delivered between the districts. Results: Due to the favored migration of tall individuals into network hubs, average body height of the hubs, and later, of the whole network increased by up to 0.1 cm per iteration depending on the network model. The general increase in height within the network depended on connectedness and on the amount of height information that was exchanged between neighboring districts. If higher amounts of neighborhood height information were exchanged, the general increase in height within the network was large (strong secular trend). The trend in the homogeneous fishnet like network was lowest, the trend in the random network was highest. Yet, some network properties, such as the heteroscedasticity and autocorrelations of the migration simulation models differed greatly from the natural features observed in Swiss military conscript networks. Autocorrelations of district heights for instance, were much higher in the migration models. Conclusion: This study confirmed that secular height trends can be modeled by preferred migration of tall individuals into network hubs. However, basic network properties of the migration simulation models differed greatly from the natural features observed in Swiss military conscripts. Similar network-based data from other countries should be explored to better investigate height trends with Monte Carlo migration approach. KW - secular trend KW - body height KW - simulation KW - community effect KW - Monte Carlo method KW - network Y1 - 2017 U6 - https://doi.org/10.1127/anthranz/2017/0703 SN - 0003-5548 SN - 2363-7099 VL - 74 IS - 1 SP - 81 EP - 88 PB - Schweizerbart CY - Stuttgart ER - TY - JOUR A1 - Myachykov, Andriy A1 - Chapman, Ashley J. A1 - Fischer, Martin H. T1 - Cross-representational interactions BT - Interface and overlap mechanisms JF - Frontiers in psychology N2 - A crucial question facing cognitive science concerns the nature of conceptual representations as well as the constraints on the interactions between them. One specific question we address in this paper is what makes cross-representational interplay possible? We offer two distinct theoretical scenarios: according to the first scenario, co-activated knowledge representations interact with the help of an interface established between them via congruent activation in a mediating third-party general cognitive mechanism, e.g., attention. According to the second scenario, co-activated knowledge representations interact due to an overlap between their features, for example when they share a magnitude component. First, we make a case for cross representational interplay based on grounded and situated theories of cognition. Second, we discuss interface-based interactions between distinct (i.e., non-overlapping) knowledge representations. Third, we discuss how co-activated representations may share their architecture via partial overlap. Finally, we outline constraints regarding the flexibility of these proposed mechanisms. KW - representation KW - cross-representational interaction KW - simulation KW - embodiment KW - grounded cognition Y1 - 2017 SN - 1664-1078 VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Fritz, Amelie A1 - Makeyeva, Angelina A1 - Staub, Kaspar A1 - Groth, Detlef T1 - Influence of network properties on a migration induced secular height trend by Monte Carlo simulation JF - Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft für Anthropologie N2 - Background: Recent research reported height biased migration of taller individuals and a Monte Carlo simulation showed that such preferential migration of taller individuals into network hubs can induce a secular trend of height. In the simulation model taller agents in the hubs raise the overall height of all individuals in the network by a community effect. However, it could be seen that the actual network structure influences the strength of this effect. In this paper the background and the influence of the network structure on the strength of the secular trend by migration is investigated. Material and methods: Three principal network types are analyzed: networks derived from street connections in Switzerland, more regular fishing net like networks and randomly generated ones. Our networks have between 10 and 152 nodes and between 20 and 307 edges connecting the nodes. Depending on the network size between 5.000 and 90.000 agents with an average height of 170 cm (SD 6.5 cm) are initially released into the network. In each iteration new agents are regenerated based on the actual average body height of the previous iteration and, to a certain proportion, corrected by body heights in the neighboring nodes. After generating new agents, a certain number of them migrated into neighbor nodes, the model let preferentially taller agents migrate into network hubs. Migration is balanced by back migration of the same number of agents from nodes with high centrality measures to less connected nodes. The latter is random as well, but not biased by the agents height. Furthermore the distribution of agents per node and their correlation to the centrality of the nodes is varied in a systematic manner. After 100 iterations, the secular trend, i.e. the gain in body height for the different networks, is investigated in relation to the network properties. Results: We observe an increase of average agent body height after 100 iterations if height biased migration is enabled. The increase rate depends on the height of the neighboring factor, the population distribution, the relationship between population in the nodes and their centrality as well as on the network topology. Networks with uniform like distributions of the agents in the nodes, uncorrelated associations between node centrality and agent number per node, as well as very heterogeneous networks with very different node centralities lead to biggest gains in average body height. Conclusion: Our simulations show, that height biased migration into network hubs can possibly contribute to the secular trend of height increase in the human population. The strength of this "tall by migration" event depends on the actual properties of the underlying network. There is a possible significance of this mechanism for social networks, when hubs are represented by individuals and edges as their personal relationships. However, the required high number of iterations to achieve significant effects in more natural network structures in our models requires further studies to test the relevance and real effect sizes in real world scenarios. KW - secular trend KW - body height KW - simulation KW - community effect KW - Monte Carlo method KW - network KW - centrality measures Y1 - 2019 U6 - https://doi.org/10.1127/anthranz/2019/1032 SN - 0003-5548 VL - 76 IS - 5 SP - 433 EP - 443 PB - Schweizerbart CY - Stuttgart ER - TY - JOUR A1 - Banerjee, Pallavi A1 - Lipowsky, Reinhard A1 - Santer, Mark T1 - Coarse-grained molecular model for the Glycosylphosphatidylinositol anchor with and without protein JF - Journal of Chemical Theory and Computation N2 - Glycosylphosphatidylinositol (GPI) anchors are a unique class of complex glycolipids that anchor a great variety of proteins to the extracellular leaflet of plasma membranes of eukaryotic cells. These anchors can exist either with or without an attached protein called GPI-anchored protein (GPI-AP) both in vitro and in vivo. Although GPIs are known to participate in a broad range of cellular functions, it is to a large extent unknown how these are related to GPI structure and composition. Their conformational flexibility and microheterogeneity make it difficult to study them experimentally. Simplified atomistic models are amenable to all-atom computer simulations in small lipid bilayer patches but not suitable for studying their partitioning and trafficking in complex and heterogeneous membranes. Here, we present a coarse-grained model of the GPI anchor constructed with a modified version of the MARTINI force field that is suited for modeling carbohydrates, proteins, and lipids in an aqueous environment using MARTINI's polarizable water. The nonbonded interactions for sugars were reparametrized by calculating their partitioning free energies between polar and apolar phases. In addition, sugar-sugar interactions were optimized by adjusting the second virial coefficients of osmotic pressures for solutions of glucose, sucrose, and trehalose to match with experimental data. With respect to the conformational dynamics of GPI-anchored green fluorescent protein, the accessible time scales are now at least an order of magnitude larger than for the all-atom system. This is particularly important for fine-tuning the mutual interactions of lipids, carbohydrates, and amino acids when comparing to experimental results. We discuss the prospective use of the coarse-grained GPI model for studying protein-sorting and trafficking in membrane models. KW - Martini force-field KW - osmotic-pressure KW - potential-functions KW - aqueous-solution KW - dynamics KW - coefficient KW - simulation KW - trypanosoma KW - transition KW - parameters Y1 - 2020 U6 - https://doi.org/10.1021/acs.jctc.0c00056 SN - 1549-9626 SN - 1549-9618 VL - 16 IS - 6 PB - ACS Publications CY - Washington DC ER - TY - JOUR A1 - Ghahremani, Sona A1 - Giese, Holger T1 - Evaluation of self-healing systems BT - An analysis of the state-of-the-art and required improvements JF - Computers N2 - Evaluating the performance of self-adaptive systems is challenging due to their interactions with often highly dynamic environments. In the specific case of self-healing systems, the performance evaluations of self-healing approaches and their parameter tuning rely on the considered characteristics of failure occurrences and the resulting interactions with the self-healing actions. In this paper, we first study the state-of-the-art for evaluating the performances of self-healing systems by means of a systematic literature review. We provide a classification of different input types for such systems and analyse the limitations of each input type. A main finding is that the employed inputs are often not sophisticated regarding the considered characteristics for failure occurrences. To further study the impact of the identified limitations, we present experiments demonstrating that wrong assumptions regarding the characteristics of the failure occurrences can result in large performance prediction errors, disadvantageous design-time decisions concerning the selection of alternative self-healing approaches, and disadvantageous deployment-time decisions concerning parameter tuning. Furthermore, the experiments indicate that employing multiple alternative input characteristics can help with reducing the risk of premature disadvantageous design-time decisions. KW - self-healing KW - failure model KW - performance KW - simulation KW - evaluation Y1 - 2020 U6 - https://doi.org/10.3390/computers9010016 SN - 2073-431X VL - 9 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wetzel, Maria A1 - Kempka, Thomas A1 - Kühn, Michael T1 - Diagenetic trends of synthetic reservoir sandstone properties assessed by digital rock physics JF - Minerals N2 - Quantifying interactions and dependencies among geometric, hydraulic and mechanical properties of reservoir sandstones is of particular importance for the exploration and utilisation of the geological subsurface and can be assessed by synthetic sandstones comprising the microstructural complexity of natural rocks. In the present study, three highly resolved samples of the Fontainebleau, Berea and Bentheim sandstones are generated by means of a process-based approach, which combines the gravity-driven deposition of irregularly shaped grains and their diagenetic cementation by three different schemes. The resulting evolution in porosity, permeability and rock stiffness is examined and compared to the respective micro-computer tomographic (micro-CT) scans. The grain contact-preferential scheme implies a progressive clogging of small throats and consequently produces considerably less connected and stiffer samples than the two other schemes. By contrast, uniform quartz overgrowth continuously alters the pore space and leads to the lowest elastic properties. The proposed stress-dependent cementation scheme combines both approaches of contact-cement and quartz overgrowth, resulting in granulometric, hydraulic and elastic properties equivalent to those of the respective micro-CT scans, where bulk moduli slightly deviate by 0.8%, 4.9% and 2.5% for the Fontainebleau, Berea and Bentheim sandstone, respectively. The synthetic samples can be further altered to examine the impact of mineral dissolution or precipitation as well as fracturing on various petrophysical correlations, which is of particular relevance for numerous aspects of a sustainable subsurface utilisation. KW - digital core reconstruction KW - micro-CT scan KW - pore-scale KW - cementation KW - permeability-porosity relationship KW - elastic rock properties KW - numerical KW - simulation Y1 - 2021 U6 - https://doi.org/10.3390/min11020151 SN - 2075-163X VL - 11 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Klettke, Cornelia T1 - Pierre Klossowksi. L'acte créateur de l'écrivain peintre JF - Cahiers Erta N2 - Klossowski, who had originally started as a religious seeker of truth in his younger years, will – after his « reversal » – feel himself invested with the role of a « heretic » struggling with the libidinous search for truth. Even as the creator of a perverted metaphysics, he remains a seeker of the revelation of being, now in the role of the divine « adversary » who, thrown back on himself, tends to imitate a religious mystic. The divine is replaced by the whispers of the demon, which Klossowski experiences as « la complicité d'une force "démonique" » in the creation of his artworks. The Diana myth becomes a parable for the act of artistic creation. Sexuality, understood as the primordial ground of creative force that shapes the signe unique, the phantasm, shifts metaphysics to « phantasmaphysics » (Foucault), in which the mystery of the divine is exposed as a delusion (Wahnbild). KW - simulation KW - error as intentional KW - unique sign KW - incommunicable phantasm KW - simulacre Y1 - 2023 U6 - https://doi.org/10.4467/23538953CE.23.006.17568 SN - 2300-4681 SN - 2353-8953 VL - 33 SP - 139 EP - 157 PB - Wydawnictwo Uniwersytetu Gdańskiego CY - Gdansk ER -