TY - JOUR A1 - Tian, Fang A1 - Herzschuh, Ulrike A1 - Dallmeyer, Anne A1 - Xu, Qinghai A1 - Mischke, Steffen A1 - Biskaborn, Boris K. T1 - Environmental variability in the monsoon-westerlies transition zone during the last 1200 years - lake sediment analyses from central Mongolia and supra-regional synthesis JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - A high resolution multi proxy (pollen, grain size, total organic carbon) record from a small mountain lake (Lake Khuisiin; 46.6 degrees N, 101.8 degrees E; 2270 m a.s.l.) in the south eastern Khangai Mountains of central Mongolia has been used to explore changes in vegetation and climate over the last 1200 years. The pollen data indicates that the vegetation changed from dry steppe dominated by Poaceae and Artemisia (ca AD 760-950), to Larix forest steppe (ca AD 950-1170), Larix Betula forest steppe (ca AD 1170-1380), meadow dominated by Cyperaceae and Poaceae (ca AD 1380-1830), and Larix Betula forest steppe (after similar to AD 1830). The cold-wet period between AD 1380 and 1830 may relate to the Little Ice Age. Environmental changes were generally subtle and climate change seems to have been the major driver of variations in vegetation until at least the early part of the 20th century, suggesting that either the level of human activity was generally low, or the relationship between human activity and vegetation did not alter substantially between AD 760 and 1830. A review of centennial scale moisture records from China and Mongolia revealed that most areas experienced major changes at ca AD 1500 and AD 1900. However, the moisture availability since AD 1500 varied between sites, with no clear regional pattern or relationship to present day conditions. Both the reconstructions and the moisture levels simulation on a millennium scale performed in the MPI Earth System Model indicate that the monsoon-westerlies transition area shows a greater climate variability than those areas influenced by the westerlies, or by the summer monsoon only. KW - Pollen KW - Grain size KW - TOC KW - Asian monsoon KW - Westerlies KW - Late Holocene KW - Vegetation change KW - Mongolia Y1 - 2013 U6 - https://doi.org/10.1016/j.quascirev.2013.05.005 SN - 0277-3791 VL - 73 IS - 2 SP - 31 EP - 47 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Wang, Rong A1 - Zhang, Yongzhan A1 - Wünnemann, Bernd A1 - Biskaborn, Boris K. A1 - Yin, He A1 - Xia, Fei A1 - Zhou, Lianfu A1 - Diekmann, Bernhard T1 - Linkages between Quaternary climate change and sedimentary processes in Hala Lake, northern Tibetan Plateau, China JF - Journal of Asian earth sciences N2 - Profundal lake sediment cores are often interpreted in line with diverse and detailed sedimentological processes to infer paleoenvironmental conditions. The effects of frozen lake surfaces on terrigenous sediment deposition and how climate changes on the Tibetan Plateau are reflected in these lakes, however, is seldom discussed. A lake sediment core from Hala Lake (590 km(2)), northeastern Tibetan Plateau spanning the time interval from the Last Glacial Maximum to the present was investigated using high-resolution grain-size composition of lacustrine deposits. Seismic analysis along a north-south profile across the lake was used to infer the sedimentary setting within the lake basin. Periods of freezing and melting processes on the lake surface were identified by MODIS (MOD10A1) satellite data. End-member modeling of the grain size distribution allowed the discrimination between lacustrine, eolian and fluvial sediments. The dominant clay sedimentation (slack water type) during the global Last Glacial Maximum (LGM) reflects ice interceptions in long cold periods, in contrast to abundant eolian input during abrupt cold events. Therefore, fluvial and slack water sedimentation processes can indicate changes in the local paleoclimate during periods of the lake being frozen, when eolian input was minor. Inferred warm (i.e., similar to 22.7 and 19.5 cal. ka BP) and cold (i.e., similar to 11-9 and 3-1.5 cal. ka BP) spells have significant environmental impacts, not only in the regional realm, but they are also coherent with global-scale climate events. The eolian input generally follows the trend of the mid-latitude westerly wind dynamics in winter, contributing medium-sized sand to the lake center, deposited within the ice cover during icing and melting phases. Enhanced input was dominant during the Younger Dryas, Heinrich Event 1 and at around 8.2 ka, equivalent to the well-known events of the North Atlantic realm. (C) 2015 Elsevier Ltd. All rights reserved. KW - Tibetan Plateau KW - Lake deposits KW - End-member modeling KW - Grain size KW - Pleistocene and Holocene climate Y1 - 2015 U6 - https://doi.org/10.1016/j.jseaes.2015.04.008 SN - 1367-9120 SN - 1878-5786 VL - 107 SP - 140 EP - 150 PB - Elsevier CY - Oxford ER -