TY - JOUR A1 - Schreiber, Lisa A1 - Munz, Matthias A1 - Salzmann, Thomas A1 - Oswald, Sascha E. T1 - Coupled simulation of groundwater and drainage dynamics in a coastal fen T1 - Modellierung der Strömungsdynamik in einem revitalisierten Küstenmoorgebiet an der Ostsee JF - Grundwasser : Zeitschrift der Fachsektion Hydrogeologie in der Deutschen Gesellschaft für Geowissenschaften (FH-DGG) N2 - Coastal wetlands are characterized by continued human influence, e.g. with drainage ditches, coastal dikes or landscape restoration. In addition, it is important to understand the complex interactions with the sea to predict impacts of further development. In the present study the aim was to analyze surface and subsurface flow in a coastal wetland located at the Baltic Sea coastline near Warnemunde (Germany) to quantify water exchange with the Baltic Sea and analyze the effect of a storm flood event on saline intrusion. A 3-D transient groundwater model and a one-dimensional surface water model were set up and calibrated by using hydraulic head measurements. The results indicate that in addition to ditch flow, groundwater discharge to the Baltic Sea often has a significant influence on the overall water budget of the fen. From the transient modelling it became evident that water exchange between groundwater in the fen and the Baltic Sea depends on sea level and very often fluctuates between seaward and landward flow directions on daily to weekly time scales. N2 - Küstennahe Niedermoore wurden durch den Menschen verändert, bspw. durch das Anlegen von Entwässerungsgräben, dem Bau von Küstenschutzdeichen oder aktuell einer Renaturierung. Außerdem ist es wichtig die komplexe Interaktion mit der See zu verstehen, um Aussagen über die zukünftige Entwicklung treffen zu können. In der vorliegenden Studie wurde die ober- und unterirdische Strömung in einem Feuchtgebiet an der mecklenburgischen Ostseeküste nahe Warnemünde (Deutschland) untersucht, um dessen wechselseitigen Austausch mit der Ostsee zu quantifizieren und zu analysieren, wie sich ein Sturmhochwasserereignis auf den Salzeintrag ins Gebiet auswirkt. Hierfür wurde ein dreidimensionales instationäres Grundwassermodell erstellt, mit einem eindimensionalen Modell des Grabensystems gekoppelt und mit Messungen im Gebiet kalibriert und verglichen. Die Ergebnisse zeigen, dass neben der oberirdischen Entwässerung auch der Grundwasserabstrom in Richtung Ostsee eine wesentliche Komponente der Wasserbilanz darstellt. Das Verhalten entlang der Küste wird deutlich durch die Dynamik der Ostseewasserstände geprägt, wobei ein Grundwasserabstrom mit einem Zustrom von Ostseewasser bei hohen Küstenwasserständen innerhalb täglicher bis wöchentlicher Zeitskalen wechselt. KW - numerical modeling KW - Baltic Sea coast KW - groundwater-surface water KW - interaction KW - storm flood KW - salinization KW - Numerische Modellierung KW - Ostseeküste KW - Grundwasser-Oberflächenwasser-Interaktion KW - Sturmhochwasser KW - Versalzung Y1 - 2021 U6 - https://doi.org/10.1007/s00767-021-00486-y SN - 1430-483X SN - 1432-1165 VL - 26 IS - 3 SP - 289 EP - 304 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Petazzi, Roberto Arturo A1 - Koikkarah Aji, Amit A1 - Tischler, Nicole D. A1 - Chiantia, Salvatore T1 - Detection of envelope glycoprotein assembly from old world hantaviruses in the Golgi apparatus of living cells JF - Journal of virology N2 - Hantaviruses are emerging pathogens that occasionally cause deadly outbreaks in the human population. While the structure of the viral envelope has been characterized with high precision, protein-protein interactions leading to the formation of new virions in infected cells are not fully understood. We used quantitative fluorescence microscopy (i.e., number and brightness analysis and fluorescence fluctuation spectroscopy) to monitor the interactions that lead to oligomeric spike complex formation in the physiological context of living cells. To this aim, we quantified protein-protein interactions for the glycoproteins Gn and Gc from Puumala and Hantaan orthohantaviruses in several cellular models. The oligomerization of each protein was analyzed in relation to subcellular localization, concentration, and the concentration of its interaction partner. Our results indicate that, when expressed separately, Gn and Gc form, respectively, homo-tetrameric and homo-dimeric complexes, in a concentration-dependent manner. Site-directed mutations or deletion mutants showed the specificity of their homotypic interactions. When both glycoproteins were coexpressed, we observed in the Golgi apparatus clear indication of GnGc interactions and the formation of Gn-Gc multimeric protein complexes of different sizes, while using various labeling schemes to minimize the influence of the fluorescent tags. Such large glycoprotein multimers may be identified as multiple Gn viral spikes interconnected via Gc-Gc contacts. This observation provides the possible first evidence for the initial assembly steps of the viral envelope within this organelle, and does so directly in living cells.
IMPORTANCE In this work, we investigate protein-protein interactions that drive the assembly of the hantavirus envelope. These emerging pathogens have the potential to cause deadly outbreaks in the human population. Therefore, it is important to improve our quantitative understanding of the viral assembly process in infected cells, from a molecular point of view. By applying advanced fluorescence microscopy methods, we monitored the formation of viral spike complexes in different cell types. Our data support a model for hantavirus assembly according to which viral spikes are formed via the clustering of hetero-dimers of the two viral glycoproteins Gn and Gc. Furthermore, the observation of large Gn-Gc hetero-multimers provide the possible first evidence for the initial assembly steps of the viral envelope, directly in the Golgi apparatus of living cells. KW - fluorescence fluctuation microscopy KW - number and brightness KW - virus KW - assembly KW - fluorescence correlation spectroscopy KW - protein-protein KW - interaction KW - fluorescence microscopy KW - fluorescent image analysis Y1 - 2021 U6 - https://doi.org/10.1128/JVI.01238-20 SN - 1098-5514 VL - 95 IS - 4 PB - American Society for Microbiology CY - Baltimore, Md. ER - TY - JOUR A1 - Schachner, Theresa A1 - Gross, Christoph A1 - Hasl, Andrea A1 - Wangenheim, Florian von A1 - Kowatsch, Tobias T1 - Deliberative and paternalistic interaction styles for conversational agents in digital health BT - procedure and validation through a web-based experiment JF - Journal of medical internet research : international scientific journal for medical research, information and communication on the internet ; JMIR N2 - Background: Recent years have witnessed a constant increase in the number of people with chronic conditions requiring ongoing medical support in their everyday lives. However, global health systems are not adequately equipped for this extraordinarily time-consuming and cost-intensive development. Here, conversational agents (CAs) can offer easily scalable and ubiquitous support. Moreover, different aspects of CAs have not yet been sufficiently investigated to fully exploit their potential. One such trait is the interaction style between patients and CAs. In human-to-human settings, the interaction style is an imperative part of the interaction between patients and physicians. Patient-physician interaction is recognized as a critical success factor for patient satisfaction, treatment adherence, and subsequent treatment outcomes. However, so far, it remains effectively unknown how different interaction styles can be implemented into CA interactions and whether these styles are recognizable by users. Objective: The objective of this study was to develop an approach to reproducibly induce 2 specific interaction styles into CA-patient dialogs and subsequently test and validate them in a chronic health care context. Methods: On the basis of the Roter Interaction Analysis System and iterative evaluations by scientific experts and medical health care professionals, we identified 10 communication components that characterize the 2 developed interaction styles: deliberative and paternalistic interaction styles. These communication components were used to develop 2 CA variations, each representing one of the 2 interaction styles. We assessed them in a web-based between-subject experiment. The participants were asked to put themselves in the position of a patient with chronic obstructive pulmonary disease. These participants were randomly assigned to interact with one of the 2 CAs and subsequently asked to identify the respective interaction style. Chi-square test was used to assess the correct identification of the CA-patient interaction style. Results: A total of 88 individuals (42/88, 48% female; mean age 31.5 years, SD 10.1 years) fulfilled the inclusion criteria and participated in the web-based experiment. The participants in both the paternalistic and deliberative conditions correctly identified the underlying interaction styles of the CAs in more than 80% of the assessments (X-1(,8)8(2)=38.2; P<.001; phi coefficient r(phi)=0.68). The validation of the procedure was hence successful. Conclusions: We developed an approach that is tailored for a medical context to induce a paternalistic and deliberative interaction style into a written interaction between a patient and a CA. We successfully tested and validated the procedure in a web-based experiment involving 88 participants. Future research should implement and test this approach among actual patients with chronic diseases and compare the results in different medical conditions. This approach can further be used as a starting point to develop dynamic CAs that adapt their interaction styles to their users. KW - conversational agents KW - chatbots KW - human-computer interaction KW - physician-patient relationship KW - interaction styles KW - deliberative KW - interaction KW - paternalistic interaction KW - digital health KW - chronic KW - conditions KW - COPD Y1 - 2021 U6 - https://doi.org/10.2196/22919 SN - 1438-8871 VL - 23 IS - 1 PB - Healthcare World CY - Richmond, Va. ER -