TY - JOUR A1 - Glombitza, Clemens A1 - Stockhecke, Mona A1 - Schubert, Carsten J. A1 - Vetter, Alexandra A1 - Kallmeyer, Jens T1 - Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia,Turkey) JF - Frontiers in microbiology N2 - As part of the International Continental Drilling Program deep lake drilling project Paleo Van, we investigated sulfate reduction (SR) in deep sediment cores of the saline, alkaline (salinity 21.4%0, alkalinity 155 m mEq-1, pH 9.81) Lake Van, Turkey. The cores were retrieved in the Northern Basin (NB) and at Ahlat Ridge (AR) and reached a maximum depth of 220 m. Additionally, 65-75 cm long gravity cores were taken at both sites. SR rates (SRR) were low (<22 nmol cm-3 day-1) compared to lakes with higher salinity and alkalinity, indicating that salinity and alkalinity are not limiting SR in Lake Van. Both sites differ significantly in rates and depth distribution of SR. In NB, SRR are up to 10 times higher than at AR. SR could be detected down to 19 mblf (meters below lake floor) at NB and down to 13 mblf at AR. Although SRR were lower at AR than at NB, organic matter (OM) concentrations were higher. In contrast, dissolved OM in the pore water at AR contained more macromolecular OM and less low molecular weight OM.VVe thus suggest, that OM content alone cannot be used to infer microbial activity at Lake Van but that quality of OM has an important impact as well. These differences suggest that biogeochemical processes in lacustrine sediments are reacting very sensitively to small variations in geological, physical, or chemical parameters over relatively short distances. KW - saline lake KW - alkaline lake KW - sulfate reduction KW - deep biosphere KW - organic matter Y1 - 2013 U6 - https://doi.org/10.3389/fmicb.2013.00209 SN - 1664-302X VL - 4 IS - 28 PB - Frontiers Research Foundation CY - Lausanne ER - TY - THES A1 - Heise, Janine T1 - Phylogenetic and physiological characterization of deep-biosphere microorganisms in El’gygytgyn Crater Lake sediments T1 - Phylogenetische und physiologische Charakterisierung der Tiefen Biosphäre in El'gygytgyn Kraterseesedimenten N2 - The existence of diverse and active microbial ecosystems in the deep subsurface – a biosphere that was originally considered devoid of life – was discovered in multiple microbiological studies. However, most of the studies are restricted to marine ecosystems, while our knowledge about the microbial communities in the deep subsurface of lake systems and their potentials to adapt to changing environmental conditions is still fragmentary. This doctoral thesis aims to build up a unique data basis for providing the first detailed high-throughput characterization of the deep biosphere of lacustrine sediments and to emphasize how important it is to differentiate between the living and the dead microbial community in deep biosphere studies. In this thesis, up to 3.6 Ma old sediments (up to 317 m deep) of the El’gygytgyn Crater Lake were examined, which represents the oldest terrestrial climate record of the Arctic. Combining next generation sequencing with detailed geochemical characteristics and other environmental parameters, the microbial community composition was analyzed in regard to changing climatic conditions within the last 3.6 Ma to 1.0 Ma (Pliocene and Pleistocene). DNA from all investigated sediments was successfully extracted and a surprisingly diverse (6,910 OTUs) and abundant microbial community in the El’gygytgyn deep sediments were revealed. The bacterial abundance (10³-10⁶ 16S rRNA copies g⁻¹ sediment) was up to two orders of magnitudes higher than the archaeal abundance (10¹-10⁵) and fluctuates with the Pleistocene glacial/interglacial cyclicality. Interestingly, a strong increase in the microbial diversity with depth was observed (approximately 2.5 times higher diversity in Pliocene sediments compared to Pleistocene sediments). The increase in diversity with depth in the Lake El’gygytgyn is most probably caused by higher sedimentary temperatures towards the deep sediment layers as well as an enhanced temperature-induced intra-lake bioproductivity and higher input of allochthonous organic-rich material during Pliocene climatic conditions. Moreover, the microbial richness parameters follow the general trends of the paleoclimatic parameters, such as the paleo-temperature and paleo-precipitation. The most abundant bacterial representatives in the El’gygytgyn deep biosphere are affiliated with the phyla Proteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria, which are also commonly distributed in the surrounding permafrost habitats. The predominated taxon was the halotolerant genus Halomonas (in average 60% of the total reads per sample). Additionally, this doctoral thesis focuses on the live/dead differentiation of microbes in cultures and environmental samples. While established methods (e.g., fluorescence in situ hybridization, RNA analyses) are not applicable to the challenging El’gygytgyn sediments, two newer methods were adapted to distinguish between DNA from live cells and free (extracellular, dead) DNA: the propidium monoazide (PMA) treatment and the cell separation adapted for low amounts of DNA. The applicability of the DNA-intercalating dye PMA was successfully evaluated to mask free DNA of different cultures of methanogenic archaea, which play a major role in the global carbon cycle. Moreover, an optimal procedure to simultaneously treat bacteria and archaea was developed using 130 µM PMA and 5 min of photo-activation with blue LED light, which is also applicable on sandy environmental samples with a particle load of ≤ 200 mg mL⁻¹. It was demonstrated that the soil texture has a strong influence on the PMA treatment in particle-rich samples and that in particular silt and clay-rich samples (e.g., El’gygytgyn sediments) lead to an insufficient shielding of free DNA by PMA. Therefore, a cell separation protocol was used to distinguish between DNA from live cells (intracellular DNA) and extracellular DNA in the El’gygytgyn sediments. While comparing these two DNA pools with a total DNA pool extracted with a commercial kit, significant differences in the microbial composition of all three pools (mean distance of relative abundance: 24.1%, mean distance of OTUs: 84.0%) was discovered. In particular, the total DNA pool covers significantly fewer taxa than the cell-separated DNA pools and only inadequately represents the living community. Moreover, individual redundancy analyses revealed that the microbial community of the intra- and extracellular DNA pool are driven by different environmental factors. The living community is mainly influenced by life-dependent parameters (e.g., sedimentary matrix, water availability), while the extracellular DNA is dependent on the biogenic silica content. The different community-shaping parameters and the fact, that a redundancy analysis of the total DNA pool explains significantly less variance of the microbial community, indicate that the total DNA represents a mixture of signals of the live and dead microbial community. This work provides the first fundamental data basis of the diversity and distribution of microbial deep biosphere communities of a lake system over several million years. Moreover, it demonstrates the substantial importance of extracellular DNA in old sediments. These findings may strongly influence future environmental community analyses, where applications of live/dead differentiation avoid incorrect interpretations due to a failed extraction of the living microbial community or an overestimation of the past community diversity in the course of total DNA extraction approaches. N2 - Innerhalb der letzten 20 Jahre wurden diverse und aktive mikrobielle Gemeinschaften in zahlreichen Habitaten der tiefen Biosphäre gefunden, in denen zuvor kein Leben denkbar war. Die mikrobiologischen Untersuchungen beschränken sich dabei meist auf marine Ökosysteme, wohingegen das Wissen über die tiefe Biosphäre von Seesystemen und die Anpassung der Mikroorganismen an sich ändernde klimatische Bedingungen noch sehr eingeschränkt ist. Ziel dieser Arbeit ist es, die mikrobielle Gemeinschaftsstruktur der tiefen Biosphäre des El‘gygytgyn Kratersees in Hinblick auf klimatische Veränderungen der vergangenen 1,0 bis 3,6 Millionen Jahre zu charakterisieren, beeinflussende Umweltparameter zu detektieren und dabei zwischen der lebenden und toten mikrobiellen Gemeinschaft zu differenzieren. Die Seesedimente (43-317 m tief) weisen eine erstaunlich hohe Diversität (6910 OTUs) und Mikrobenfülle (10³-10⁶ bakterielle, 10¹-10⁵ archaeale 16S rRNA Kopien g⁻¹ Sediment) auf, wobei eine 2,5-fach höhere Diversität in den pliozänen Sedimenten im Vergleich zu den jüngeren pleistozänen Sedimenten detektiert werden konnte. Der Diversitätsanstieg mit zunehmendem Sedimentalter (und Tiefe) basiert höchstwahrscheinlich auf die erhöhte temperaturinduzierte Bioaktivität im See und dem erhöhten Eintrag von Organik reichen Material innerhalb des Pliozäns (feucht und warm). Die Unterscheidung zwischen der DNA lebender Mikroben (intrazellulare DNA) und freier DNA (extrazellulare DNA, meist von toten Mikroben) wurde durch die Adaption von zwei Extraktionsmethoden, der Behandlung mit Propidium-Monoazid (PMA) und der Zellseparation, erreicht. Dabei wurde ein PMA-Protokoll (130 µM PMA, 5 Min Lichtaktivierung mit blauen LEDs) zur erfolgreichen Behandlung von Reinkulturen methanogener Archaeen etabliert, das auch für sandige Umweltproben (Partikelbeladung ≤ 200 mg mL⁻¹) nutzbar ist. Für die feinporigeren Seesedimente des El’gygytgyn Kratersees wurden die zellseparierten DNA-Pools der iDNA und eDNA mit dem Gesamt-DNA-Extrakt (kommerzielles Kit) verglichen, wobei die DNA-Pools starke Unterschiede in ihrer Zusammensetzung aufzeigten (24,1% Distanz basierend auf relative Häufigkeiten) und der Gesamt-DNA-Extrakt die lebende mikrobielle Gemeinschaft nur unzureichend widerspiegeln konnte. Individuelle Redundanzanalysen (RDA) zeigten, dass die mikrobielle Gemeinschaft der iDNA von lebensbeeinflussenden Parametern abhängig ist (u.a. Sedimentmatrix, Wasserverfügbarkeit), wohingegen die der eDNA maßgeblich durch den Anteil an biogener Kieselerde (silica) beeinflusst wird. Diese Arbeit stellt die erste umfangreiche Datenbasis der Diversität und Verteilung von Mikroorganismengemeinschaften in der tiefen Biosphäre eines Seesystems über mehrere Millionen Jahre dar. Zusätzlich zeigt die Studie, dass die Lebend/Tot-Unterscheidung, mit dem ein höherer Anteil der Varianz innerhalb der Gemeinschaft durch Umweltparameter erklärt werden kann, im Vergleich zur Gesamt-DNA-Extraktion ein wesentlicher Schritt zur genauen Widerspiegelung der mikrobiellen Gemeinschaft und deren Funktion in der Tiefen Biosphäre ist. KW - Mikrobiologie KW - El`gygytgyn Kratersee KW - Tiefe Biosphäre KW - Diversität KW - microbiology KW - El’gygytgyn Crater Lake KW - diversity KW - deep biosphere Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403436 ER - TY - JOUR A1 - Krauze, Patryk A1 - Kämpf, Horst A1 - Horn, Fabian A1 - Liu, Qi A1 - Voropaev, Andrey A1 - Wagner, Dirk A1 - Alawi, Mashal T1 - Microbiological and Geochemical Survey of CO2-Dominated Mofette and Mineral Waters of the Cheb Basin, Czech Republic JF - Frontiers in microbiology N2 - The Cheb Basin (NW Bohemia, Czech Republic) is a shallow, neogene intracontinental basin. It is a non-volcanic region which features frequent earthquake swarms and large-scale diffuse degassing of mantle-derived CO2 at the surface that occurs in the form of CO2-rich mineral springs and wet and dry mofettes. So far, the influence of CO2 degassing onto the microbial communities has been studied for soil environments, but not for aquatic systems. We hypothesized, that deep-trenching CO2 conduits interconnect the subsurface with the surface. This admixture of deep thermal fluids should be reflected in geochemical parameters and in the microbial community compositions. In the present study four mineral water springs and two wet mofettes were investigated through an interdisciplinary survey. The waters were acidic and differed in terms of organic carbon and anion/cation concentrations. Element geochemical and isotope analyses of fluid components were used to verify the origin of the fluids. Prokaryotic communities were characterized through quantitative PCR and Illumina 16S rRNA gene sequencing. Putative chemolithotrophic, anaerobic and microaerophilic organisms connected to sulfur (e.g., Sulfuricurvum, Sulfurimonas) and iron (e.g., Gallionella, Sideroxydans) cycling shaped the core community. Additionally, CO2-influenced waters form an ecosystem containing many taxa that are usually found in marine or terrestrial subsurface ecosystems. Multivariate statistics highlighted the influence of environmental parameters such as pH, Fe2+ concentration and conductivity on species distribution. The hydrochemical and microbiological survey introduces a new perspective on mofettes. Our results support that mofettes are either analogs or rather windows into the deep biosphere and furthermore enable access to deeply buried paleo-sediments. KW - elevated CO2 concentration KW - microbial ecology KW - deep biosphere KW - Eger Rift KW - paleo-sediment KW - Sulfuricurvum KW - Gallionella KW - Sideroxydans Y1 - 2017 U6 - https://doi.org/10.3389/fmicb.2017.02446 SN - 1664-302X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Liu, Qi A1 - Adler, Karsten A1 - Lipus, Daniel A1 - Kämpf, Horst A1 - Bussert, Robert A1 - Plessen, Birgit A1 - Schulz, Hans-Martin A1 - Krauze, Patryk A1 - Horn, Fabian A1 - Wagner, Dirk A1 - Mangelsdorf, Kai A1 - Alawi, Mashal T1 - Microbial signatures in deep CO2-saturated miocene sediments of the active Hartousov mofette system (NW Czech Republic) JF - Frontiers in microbiology N2 - The Hartousov mofette system is a natural CO2 degassing site in the central Cheb Basin (Eger Rift, Central Europe). In early 2016 a 108 m deep core was obtained from this system to investigate the impact of ascending mantle-derived CO2 on indigenous deep microbial communities and their surrounding life habitat. During drilling, a CO2 blow out occurred at a depth of 78.5 meter below surface (mbs) suggesting a CO2 reservoir associated with a deep low-permeable CO2-saturated saline aquifer at the transition from Early Miocene terrestrial to lacustrine sediments. Past microbial communities were investigated by hopanoids and glycerol dialkyl glycerol tetraethers (GDGTs) reflecting the environmental conditions during the time of deposition rather than showing a signal of the current deep biosphere. The composition and distribution of the deep microbial community potentially stimulated by the upward migration of CO2 starting during Mid Pleistocene time was investigated by intact polar lipids (IPLs), quantitative polymerase chain reaction (qPCR), and deoxyribonucleic acid (DNA) analysis. The deep biosphere is characterized by microorganisms that are linked to the distribution and migration of the ascending CO2-saturated groundwater and the availability of organic matter instead of being linked to single lithological units of the investigated rock profile. Our findings revealed high relative abundances of common soil and water bacteria, in particular the facultative, anaerobic and potential iron-oxidizing Acidovorax and other members of the family Comamonadaceae across the whole recovered core. The results also highlighted the frequent detection of the putative sulfate-oxidizing and CO2-fixating genus Sulfuricurvum at certain depths. A set of new IPLs are suggested to be indicative for microorganisms associated to CO2 accumulation in the mofette system. KW - geo-bio interaction KW - CO2 KW - mofette systems KW - Eger Rift KW - microbial lipid KW - biomarker KW - microbial diversity KW - deep biosphere KW - saline groundwater Y1 - 2020 U6 - https://doi.org/10.3389/fmicb.2020.543260 SN - 1664-302X VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Kallmeyer, Jens A1 - Grewe, Sina A1 - Glombitza, Clemens A1 - Kitte, J. Axel T1 - Microbial abundance in lacustrine sediments BT - a case study from Lake Van, Turkey T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The ICDP "PaleoVan" drilling campaign at Lake Van, Turkey, provided a long (> 100 m) record of lacustrine subsurface sedimentary microbial cell abundance. After the ICDP campaign at Potrok Aike, Argentina, this is only the second time deep lacustrine cell counts have been documented. Two sites were cored and revealed a strikingly similar cell distribution despite differences in organic matter content and microbial activity. Although shifted towards higher values, cell counts from Lake Potrok Aike, Argentina, reveal very similar distribution patterns with depth. The lacustrine cell count data are significantly different from published marine records; the most probable cause is differences in sedimentary organic matter composition with marine sediments containing a higher fraction of labile organic matter. Previous studies showed that microbial activity and abundance increase centimetres to metres around geologic interfaces. The finely laminated Lake Van sediment allowed studying this phenomenon on the microscale. We sampled at the scale of individual laminae, and in some depth intervals, we found large differences in microbial abundance between the different laminae. This small-scale heterogeneity is normally overlooked due to much larger sampling intervals that integrate over several centimetres. However, not all laminated intervals exhibit such large differences in microbial abundance, and some non-laminated horizons show large variability on the millimetre scale as well. The reasons for such contrasting observations remain elusive, but indicate that heterogeneity of microbial abundance in subsurface sediments has not been taken into account sufficiently. These findings have implications not just for microbiological studies but for geochemistry as well, as the large differences in microbial abundance clearly show that there are distinct microhabitats that deviate considerably from the surrounding layers. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 723 KW - subsurface biosphere KW - deep biosphere KW - Lake Van KW - cell counts KW - lacustrine sediment Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429828 SN - 1866-8372 IS - 723 SP - 1667 EP - 1677 ER - TY - GEN A1 - Liu, Qi A1 - Kämpf, Horst A1 - Bussert, Robert A1 - Krauze, Patryk A1 - Horn, Fabian A1 - Nickschick, Tobias A1 - Plessen, Birgit A1 - Wagner, Dirk A1 - Alawi, Mashal T1 - Influence of CO2 degassing on the microbial community in a dry mofette field in Hartoušov, Czech Republic (Western Eger Rift) T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The Cheb Basin (CZ) is a shallow Neogene intracontinental basin filled with fluvial and lacustrine sediments that is located in the western part of the Eger Rift. The basin is situated in a seismically active area and is characterized by diffuse degassing of mantle-derived CO2 in mofette fields. The Hartousov mofette field shows a daily CO2 flux of 23-97 tons of CO2 released over an area of 0.35 km(2) and a soil gas concentration of up to 100% CO2. The present study aims to explore the geo-bio interactions provoked by the influence of elevated CO2 concentrations on the geochemistry and microbial community of soils and sediments. To sample the strata, two 3-m cores were recovered. One core stems from the center of the degassing structure, whereas the other core was taken 8 m from the ENE and served as an undisturbed reference site. The sites were compared regarding their geochemical features, microbial abundances, and microbial community structures. The mofette site is characterized by a low pH and high TOC/sulfate contents. Striking differences in the microbial community highlight the substantial impact of elevated CO2 concentrations and their associated side effects on microbial processes. The abundance of microbes did not show a typical decrease with depth, indicating that the uprising CO2-rich fluid provides sufficient substrate for chemolithoautotrophic anaerobic microorganisms. Illumine MiSeq sequencing of the 16S rRNA genes and multivariate statistics reveals that the pH strongly influences microbial composition and explains around 38.7% of the variance at the mofette site and 22.4% of the variance between the mofette site and the undisturbed reference site. Accordingly, acidophilic microorganisms (e.g., OTUs assigned to Acidobacteriaceae and Acidithiobacillus) displayed a much higher relative abundance at the mofette site than at the reference site. The microbial community at the mofette site is characterized by a high relative abundance of methanogens and taxa involved in sulfur cycling. The present study provides intriguing insights into microbial life and geo-bio interactions in an active seismic region dominated by emanating mantle-derived CO2-rich fluids, and thereby builds the basis for further studies, e.g., focusing on the functional repertoire of the communities. However, it remains open if the observed patterns can be generalized for different time-points or sites. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1100 KW - geo-bio interaction KW - elevated CO2 concentration KW - paleo-sediment KW - deep biosphere KW - acidophilic microorganisms KW - Acidobactetiaceae KW - Acidithiobacillus KW - Acidothermus Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-471153 SN - 1866-8372 IS - 1100 ER - TY - JOUR A1 - Liu, Qi A1 - Kämpf, Horst A1 - Bussert, Robert A1 - Krauze, Patryk A1 - Horn, Fabian A1 - Nickschick, Tobias A1 - Plessen, Birgit A1 - Wagner, Dirk A1 - Alawi, Mashal T1 - Influence of CO2 degassing on the microbial community in a dry mofette field in Hartoušov, Czech Republic (Western Eger Rift) JF - Frontiers in Microbiology N2 - The Cheb Basin (CZ) is a shallow Neogene intracontinental basin filled with fluvial and lacustrine sediments that is located in the western part of the Eger Rift. The basin is situated in a seismically active area and is characterized by diffuse degassing of mantle-derived CO2 in mofette fields. The Hartousov mofette field shows a daily CO2 flux of 23-97 tons of CO2 released over an area of 0.35 km(2) and a soil gas concentration of up to 100% CO2. The present study aims to explore the geo-bio interactions provoked by the influence of elevated CO2 concentrations on the geochemistry and microbial community of soils and sediments. To sample the strata, two 3-m cores were recovered. One core stems from the center of the degassing structure, whereas the other core was taken 8 m from the ENE and served as an undisturbed reference site. The sites were compared regarding their geochemical features, microbial abundances, and microbial community structures. The mofette site is characterized by a low pH and high TOC/sulfate contents. Striking differences in the microbial community highlight the substantial impact of elevated CO2 concentrations and their associated side effects on microbial processes. The abundance of microbes did not show a typical decrease with depth, indicating that the uprising CO2-rich fluid provides sufficient substrate for chemolithoautotrophic anaerobic microorganisms. Illumine MiSeq sequencing of the 16S rRNA genes and multivariate statistics reveals that the pH strongly influences microbial composition and explains around 38.7% of the variance at the mofette site and 22.4% of the variance between the mofette site and the undisturbed reference site. Accordingly, acidophilic microorganisms (e.g., OTUs assigned to Acidobacteriaceae and Acidithiobacillus) displayed a much higher relative abundance at the mofette site than at the reference site. The microbial community at the mofette site is characterized by a high relative abundance of methanogens and taxa involved in sulfur cycling. The present study provides intriguing insights into microbial life and geo-bio interactions in an active seismic region dominated by emanating mantle-derived CO2-rich fluids, and thereby builds the basis for further studies, e.g., focusing on the functional repertoire of the communities. However, it remains open if the observed patterns can be generalized for different time-points or sites. KW - geo–bio interaction KW - elevated CO2 KW - concentration KW - paleo-sediment KW - deep biosphere KW - acidophilic microorganisms KW - Acidobacteriaceae KW - Acidithiobacillus KW - Acidothermus Y1 - 2018 U6 - https://doi.org/10.3389/fmicb.2018.02787 SN - 1664-302X VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - THES A1 - Liu, Qi T1 - Influence of CO2 degassing on microbial community distribution and activity in the Hartoušov degassing system, western Eger Rift (Czech Republic) N2 - The Cheb Basin (CZ) is a shallow Neogene intracontinental basin located in the western Eger Rift. The Cheb Basin is characterized by active seismicity and diffuse degassing of mantle-derived CO2 in mofette fields. Within the Cheb Basin, the Hartoušov mofette field shows a daily CO2 flux of 23–97 tons. More than 99% of CO2 released over an area of 0.35 km2. Seismic active periods have been observed in 2000 and 2014 in the Hartoušov mofette field. Due to the active geodynamic processes, the Cheb Basin is considered to be an ideal region for the continental deep biosphere research focussing on the interaction of biological processes with geological processes. To study the influence of CO2 degassing on microbial community in the surface and subsurface environments, two 3-m shallow drillings and a 108.5-m deep scientific drilling were conducted in 2015 and 2016 respectively. Additionally, the fluid retrieved from the deep drilling borehole was also recovered. The different ecosystems were compared regarding their geochemical properties, microbial abundances, and microbial community structures. The geochemistry of the mofette is characterized by low pH, high TOC, and sulfate contents while the subsurface environment shows a neutral pH, and various TOC and sulfate contents in different lithological settings. Striking differences in the microbial community highlight the substantial impact of elevated CO2 concentrations and high saline groundwater on microbial processes. In general, the microorganisms had low abundance in the deep subsurface sediment compared with the shallow mofette. However, within the mofette and the deep subsurface sediment, the abundance of microbes does not show a typical decrease with depth, indicating that the uprising CO2-rich groundwater has a strong influence on the microbial communities via providing sufficient substrate for anaerobic chemolithoautotrophic microorganisms. Illumina MiSeq sequencing of the 16S rRNA genes and multivariate statistics reveals that the pH strongly influences the microbial community composition in the mofette, while the subsurface microbial community is significantly influenced by the groundwater which motivated by the degassing CO2. Acidophilic microorganisms show a much higher relative abundance in the mofette. Meanwhile, the OTUs assigned to family Comamonadaceae are the dominant taxa which characterize the subsurface communities. Additionally, taxa involved in sulfur cycling characterizing the microbial communities in both mofette and CO2 dominated subsurface environments. Another investigated important geo–bio interaction is the influence of the seismic activity. During seismic events, released H2 may serve as the electron donor for microbial hydrogenotrophic processes, such as methanogenesis. To determine whether the seismic events can potentially trigger methanogenesis by the elevated geogenic H2 concentration, we performed laboratory simulation experiments with sediments retrieved from the drillings. The simulation results indicate that after the addition of hydrogen, substantial amounts of methane were produced in incubated mofette sediments and deep subsurface sediments. The methanogenic hydrogenotrophic genera Methanobacterium was highly enriched during the incubation. The modeling of the in-situ observation of the earthquake swarm period in 2000 at the Novy Kostel focal area/Czech Republic and our laboratory simulation experiments reveals a close relation between seismic activities and microbial methane production via earthquake-induced H2 release. We thus conclude that H2 – which is released during seismic activity – can potentially trigger methanogenic activity in the deep subsurface. Based on this conclusion, we further hypothesize that the hydrogenotrophic early life on Earth was boosted by the Late Heavy Bombardment induced seismic activity in approximately 4.2 to 3.8 Ga. N2 - Das Eger-Becken (CZ) ist ein flaches, intrakontinentales neogenes Becken im westlichen Eger-Graben. Das Eger-Becken zeichnet sich durch aktive Seismizität und die diffuse Entgasung von aus dem Mantel stammenden CO2 in Mofettenfeldern aus. Das Mofettenfeld von Hartoušov weist einen täglichen CO2-Fluss von 23-97 Tonnen auf. Mehr als 99% des CO2 werden auf einer Fläche von 0,35 km2 freigesetzt. Im Untersuchungsgebiet wurden in den Jahren 2000 und 2014 seismisch aktive Perioden beobachtet. Aufgrund der aktiven geodynamischen Prozesse gilt das Egerer Becken als ideale Region für die kontinentale Tiefenbiosphärenforschung, die sich auf die Wechselwirkung von biologischen Prozessen mit geologischen Prozessen konzentriert. Zur Untersuchung des Einflusses der CO2-Entgasung auf die mikrobielle Gemeinschaft in der ober- und unterirdischen Umwelt wurden 2015 und 2016 zwei 3 m tiefe Flachbohrungen und eine 108,5 m tiefe wissenschaftliche Bohrung durchgeführt. Zusätzlich wurde auch aus dem Tiefbohrloch Flüssigkeit gewonnen. Die verschiedenen Ökosysteme wurden hinsichtlich ihrer geochemischen Eigenschaften, der mikrobiellen Abundanzen und der mikrobiellen Gemeinschaftsstrukturen verglichen. Die Geochemie der Mofetten zeichnet sich durch einen niedrigen pH-Wert und hohe TOC- und Sulfatgehalte aus, während das unterirdische Milieu einen neutralen pH-Wert und verschiedene TOC- und Sulfatgehalte in unterschiedlichen lithologischen Umgebungen aufweist. Auffällige Unterschiede in der mikrobiellen Gemeinschaft unterstreichen den erheblichen Einfluss erhöhter CO2-Konzentrationen und stark salzhaltigen Grundwassers auf mikrobielle Prozesse. Generell waren die mikrobiellen Abundanzen in dem tiefen Untergrundsediment im Vergleich zur flachen Mofette gering. Innerhalb der Mofette und des tiefen unterirdischen Sediments zeigt die Häufigkeit der Mikroorganismen jedoch keine typische Abnahme mit der Tiefe, was darauf hinweist, dass das aufsteigende CO2-reiche Grundwasser einen starken Einfluss auf die mikrobiellen Gemeinschaften hat, indem es genügend Substrat für anaerobe chemolithoautotrophe Mikroorganismen bietet. Die Illumina-MiSeq-Sequenzierung der 16S rRNA-Gene und die multivariate Statistik zeigen, dass der pH-Wert die Zusammensetzung der mikrobiellen Gemeinschaft in der Mofette signifikant bestimmt, während die unterirdische mikrobielle Gemeinschaft signifikant vom Grundwasser beeinflusst wird, das durch das ausgasende CO2 geprägt ist. Azidophile Mikroorganismen zeigen eine viel höhere relative Abundanz in der Mofette, wohingegen die der Familie Comamonadaceae zugeordneten OTUs die dominierenden Taxa der unterirdischen Gemeinschaften darstellen. Zusätzlich charakterisieren Taxa, die am Schwefelzyklus beteiligt sind, die mikrobiellen Gemeinschaften sowohl in der Mofette als auch in der CO2-dominierten unterirdischen Umwelt. Eine weitere wichtige Untersuchung der Geo-Bio-Interaktion ist der Einfluss der seismischen Aktivität. Während seismischer Ereignisse kann freigesetztes H2 als Elektronendonator für mikrobielle hydrogenotrophe Prozesse, wie z.B. die Methanogenese, dienen. Um zu bestimmen, ob die seismischen Ereignisse durch die erhöhten geogenen H2-Konzentrationen möglicherweise methanogene Prozesse auslösen können, führten wir Laborsimulationsexperimente mit Sedimenten durch, die aus den Bohrungen gewonnen wurden. Die Simulationsexperimente weisen darauf hin, dass nach der Zugabe von Wasserstoff beträchtliche Mengen an Methan in inkubierten Mofettensedimenten und tiefen unterirdischen Sedimenten produziert wurden. Die methanogene hydrogenotrophe Gattung Methanobacterium wurde während der Inkubation stark angereichert. Die Modellierung der in-situ-Beobachtung der Erdbeben-Schwarmzeit im Jahr 2000 im Schwerpunktgebiet Novy Kostel/Tschechische Republik und unsere Laborsimulationsexperimente zeigen einen engen Zusammenhang zwischen seismischen Aktivitäten und der biotischen Methanproduktion durch erdbebeninduzierte H2-Freisetzung. Wir kommen daher zu dem Schluss, dass H2 - dass bei seismischer Aktivität freigesetzt wird - möglicherweise methanogene Aktivität im tiefen Untergrund auslösen kann. Basierend auf dieser Schlussfolgerung gehen wir weiter davon aus, dass das frühe hydrogenotrophe Leben, durch die durch Late Heavy Bombardment induzierte seismische Aktivität in etwa 4,2 bis 3,8 Ga verstärkt wurde. T2 - Einfluss der CO2-Entgasung auf die Verteilung und Aktivität der mikrobiellen Gemeinschaft im Hartoušov-Entgasungssystem im westlichen Eger-Graben (Tschechische Republik) KW - CO2 degassing KW - western Eger Rift KW - microbial community KW - microbial activity KW - earthquake KW - seismic activity KW - deep biosphere KW - CO2-Entgasung KW - tiefe Biosphäre KW - Erdbeben KW - mikrobielle Aktivität KW - mikrobielle Gemeinschaft KW - seismische Aktivität KW - westlichen Eger-Graben Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475341 ER - TY - GEN A1 - Adhikari, Rishi Ram A1 - Glombitza, Clemens A1 - Nickel, Julia C. A1 - Anderson, Chloe H. A1 - Dunlea, Ann G. A1 - Spivack, Arthur J. A1 - Murray, Richard W. A1 - D’Hondt, Steven A1 - Kallmeyer, Jens T1 - Hydrogen utilization potential in subsurface sediments T2 - Frontiers in microbiology N2 - Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H(2)ases to successively higher concentrations of H-2 in successively deeper zones. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 447 KW - hydrogenase KW - tritium assay KW - deep biosphere KW - microbial activity KW - Lake Van KW - Barents Sea KW - Equatorial Pacific KW - Gulf of Mexico Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407678 ER - TY - JOUR A1 - Adhikari, Rishi Ram A1 - Glombitza, Clemens A1 - Nickel, Julia C. A1 - Anderson, Chloe H. A1 - Dunlea, Ann G. A1 - Spivack, Arthur J. A1 - Murray, Richard W. A1 - Kallmeyer, Jens T1 - Hydrogen Utilization Potential in Subsurface Sediments JF - Frontiers in microbiology N2 - Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H(2)ases to successively higher concentrations of H-2 in successively deeper zones. KW - hydrogenase KW - tritium assay KW - deep biosphere KW - microbial activity KW - Lake Van KW - Barents Sea KW - Equatorial Pacific KW - Gulf of Mexico Y1 - 2016 U6 - https://doi.org/10.3389/fmicb.2016.00008 SN - 1664-302X VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Kallmeyer, Jens A1 - Pockalny, Robert A1 - Adhikari, Rishi Ram A1 - Smith, David C. A1 - D'Hondt, Steven T1 - Global distribution of microbial abundance and biomass in subseafloor sediment JF - Proceedings of the National Academy of Sciences of the United States of America N2 - The global geographic distribution of subseafloor sedimentary microbes and the cause(s) of that distribution are largely unexplored. Here, we show that total microbial cell abundance in subseafloor sediment varies between sites by ca. five orders of magnitude. This variation is strongly correlated with mean sedimentation rate and distance from land. Based on these correlations, we estimate global subseafloor sedimentary microbial abundance to be 2.9 center dot 10(29) cells [corresponding to 4.1 petagram (Pg) C and similar to 0.6% of Earth's total living biomass]. This estimate of subseafloor sedimentary microbial abundance is roughly equal to previous estimates of total microbial abundance in seawater and total microbial abundance in soil. It is much lower than previous estimates of subseafloor sedimentary microbial abundance. In consequence, we estimate Earth's total number of microbes and total living biomass to be, respectively, 50-78% and 10-45% lower than previous estimates. KW - deep biosphere KW - cell enumeration KW - global microbial biomass KW - subsurface life Y1 - 2012 U6 - https://doi.org/10.1073/pnas.1203849109 SN - 0027-8424 VL - 109 IS - 40 SP - 16213 EP - 16216 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Nagakura, Toshiki A1 - Schubert, Florian A1 - Wagner, Dirk A1 - Kallmeyer, Jens T1 - Biological sulfate reduction in deep subseafloor sediment of Guaymas Basin JF - Frontiers in microbiology N2 - Sulfate reduction is the quantitatively most important process to degrade organic matter in anoxic marine sediment and has been studied intensively in a variety of settings. Guaymas Basin, a young marginal ocean basin, offers the unique opportunity to study sulfate reduction in an environment characterized by organic-rich sediment, high sedimentation rates, and high geothermal gradients (100-958 degrees C km(-1)). We measured sulfate reduction rates (SRR) in samples taken during the International Ocean Discovery Program (IODP) Expedition 385 using incubation experiments with radiolabeled (SO42-)-S-35 carried out at in situ pressure and temperature. The highest SRR (387 nmol cm(-3) d(-1)) was recorded in near-surface sediments from Site U1548C, which had the steepest geothermal gradient (958 degrees C km(-1)). At this site, SRR were generally over an order of magnitude higher than at similar depths at other sites (e.g., 387-157 nmol cm(-3) d(-1) at 1.9 mbsf from Site U1548C vs. 46-1.0 nmol cm(-3) d(-1) at 2.1 mbsf from Site U1552B). Site U1546D is characterized by a sill intrusion, but it had already reached thermal equilibrium and SRR were in the same range as nearby Site U1545C, which is minimally affected by sills. The wide temperature range observed at each drill site suggests major shifts in microbial community composition with very different temperature optima but awaits confirmation by molecular biological analyses. At the transition between the mesophilic and thermophilic range around 40 degrees C-60 degrees C, sulfate-reducing activity appears to be decreased, particularly in more oligotrophic settings, but shows a slight recovery at higher temperatures. KW - sulfate reduction KW - subsurface life KW - deep biosphere KW - thermophiles; KW - Guaymas Basin Y1 - 2022 U6 - https://doi.org/10.3389/fmicb.2022.845250 SN - 1664-302X VL - 13 PB - Frontiers Media CY - Lausanne ER -