TY - JOUR A1 - Leuschner, Christoph A1 - Wulf, Monika A1 - Bäuchler, Patricia A1 - Hertel, Dietrich T1 - Soil C and nutrient stores under Scots pine afforestations compared to ancient beech forests in the German Pleistocene - the role of tree species and forest history JF - Forest ecology and management N2 - In the diluvial lowlands of northern Germany, the Netherlands and northern Poland, an estimated similar to 5 Mio ha of Scots pine plantations (Pinus sylvestris) has been established on sandy soil in the last 250 years replacing the former temperate broad-leaved forests after extended periods of cultivation in the Middle Ages. We examined the effect of variable stand continuity of pine plantations (recent vs. ancient: 51-128 vs. >230 years) on the soil organic carbon (SOC) store and soil nutrient capital in comparison to ancient beech forests (>230 years of continuity) which represent the potential natural forest vegetation. Recent and ancient pine stands had c. 75% larger organic layer C stores than ancient beech forests, while the total C stock in the soil (organic layer and mineral soil to 100 cm) was similar to 25% larger in the beech forests due to higher C concentrations in 0-50 cm depth of the mineral soil. The soil stores of N-tot were similar to 50% and the exchangeable Ca, K and Mg pools about three times larger under beech than under the pine stands. Resin-exchangeable P was enriched in the soils under ancient pine stands probably due to manuring in the past. After clear-cut and long cultivation, it may take >230 years of forest presence to restore the greatly reduced mineral soil C and N pools. The C and N sequestration potential of the soils appeared to be particularly small under pine indicating a pronounced tree species (pine vs. beech) effect on soil C and N dynamics. We conclude that, in the face of rising greenhouse gas emissions, the limited soil C and nutrient storage potential of Scots pine plantations on sandy soils needs consideration when selecting suitable tree species for future forestry. (C) 2013 Elsevier B.V. All rights reserved. KW - Sandy soil KW - Pinus sylvestris KW - Fagus sylvatica KW - Forest continuity KW - Historic land use KW - Nitrogen Y1 - 2013 U6 - https://doi.org/10.1016/j.foreco.2013.08.043 SN - 0378-1127 SN - 1872-7042 VL - 310 IS - 6 SP - 405 EP - 415 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Liang, Wei A1 - Heinrich, Ingo A1 - Simard, Sonia A1 - Helle, Gerhard A1 - Linan, Isabel Dorado A1 - Heinken, Thilo T1 - Climate signals derived from cell anatomy of Scots pine in NE Germany JF - Tree physiology N2 - Tree-ring chronologies of Pinus sylvestris L. from latitudinal and altitudinal limits of the species distribution have been widely used for climate reconstructions, but there are many sites within the temperate climate zone, as is the case in northeastern Germany, at which there is little evidence of a clear climate signal in the chronologies. In this study, we developed long chronologies of several cell structure variables (e. g., average lumen area and cell wall thickness) from P. sylvestris growing in northeastern Germany and investigated the influence of climate on ring widths and cell structure variables. We found significant correlations between cell structure variables and temperature, and between tree-ring width and relative humidity and vapor pressure, respectively, enabling the development of robust reconstructions from temperate sites that have not yet been realized. Moreover, it has been shown that it may not be necessary to detrend chronologies of cell structure variables and thus low-frequency climate signals may be retrieved from longer cell structure chronologies. The relatively extensive resource of archaeological material of P. sylvestris covering approximately the last millennium may now be useful for climate reconstructions in northeastern Germany and other sites in the temperate climate zone. KW - cell structure KW - dendroclimatology KW - Pinus sylvestris KW - quantitative wood anatomy KW - tree rings Y1 - 2013 U6 - https://doi.org/10.1093/treephys/tpt059 SN - 0829-318X SN - 1758-4469 VL - 33 IS - 8 SP - 833 EP - 844 PB - Oxford Univ. Press CY - Oxford ER -