TY - JOUR A1 - Zeiske, Stefan A1 - Sandberg, Oskar J. A1 - Zarrabi, Nasim A1 - Wolff, Christian Michael A1 - Raoufi, Meysam A1 - Peña-Camargo, Francisco A1 - Gutierrez-Partida, Emilio A1 - Meredith, Paul A1 - Stolterfoht, Martin A1 - Armin, Ardalan T1 - Static disorder in lead halide perovskites JF - The journal of physical chemistry letters N2 - In crystalline and amorphous semiconductors, the temperature-dependent Urbach energy can be determined from the inverse slope of the logarithm of the absorption spectrum and reflects the static and dynamic energetic disorder. Using recent advances in the sensitivity of photocurrent spectroscopy methods, we elucidate the temperature-dependent Urbach energy in lead halide perovskites containing different numbers of cation components. We find Urbach energies at room temperature to be 13.0 +/- 1.0, 13.2 +/- 1.0, and 13.5 +/- 1.0 meV for single, double, and triple cation perovskite. Static, temperature-independent contributions to the Urbach energy are found to be as low as 5.1 ?+/- 0.5, 4.7 +/- 0.3, and 3.3 +/- 0.9 meV for the same systems. Our results suggest that, at a low temperature, the dominant static disorder in perovskites is derived from zero-point phonon energy rather than structural disorder. This is unusual for solution-processed semiconductors but broadens the potential application of perovskites further to quantum electronics and devices. KW - Cations KW - External quantum efficiency KW - Perovskites KW - Solar cells KW - Solar energy Y1 - 2022 U6 - https://doi.org/10.1021/acs.jpclett.2c01652 SN - 1948-7185 VL - 13 IS - 31 SP - 7280 EP - 7285 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Le Corre, Vincent M. A1 - Diekmann, Jonas A1 - Peña-Camargo, Francisco A1 - Thiesbrummel, Jarla A1 - Tokmoldin, Nurlan A1 - Gutierrez-Partida, Emilio A1 - Peters, Karol Pawel A1 - Perdigón-Toro, Lorena A1 - Futscher, Moritz H. A1 - Lang, Felix A1 - Warby, Jonathan A1 - Snaith, Henry J. A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Quantification of efficiency losses due to mobile ions in Perovskite solar cells via fast hysteresis measurements JF - Solar RRL N2 - Perovskite semiconductors differ from most inorganic and organic semiconductors due to the presence of mobile ions in the material. Although the phenomenon is intensively investigated, important questions such as the exact impact of the mobile ions on the steady-state power conversion efficiency (PCE) and stability remain. Herein, a simple method is proposed to estimate the efficiency loss due to mobile ions via "fast-hysteresis" measurements by preventing the perturbation of mobile ions out of their equilibrium position at fast scan speeds (approximate to 1000 V s(-1)). The "ion-free" PCE is between 1% and 3% higher than the steady-state PCE, demonstrating the importance of ion-induced losses, even in cells with low levels of hysteresis at typical scan speeds (approximate to 100mv s(-1)). The hysteresis over many orders of magnitude in scan speed provides important information on the effective ion diffusion constant from the peak hysteresis position. The fast-hysteresis measurements are corroborated by transient charge extraction and capacitance measurements and numerical simulations, which confirm the experimental findings and provide important insights into the charge carrier dynamics. The proposed method to quantify PCE losses due to field screening induced by mobile ions clarifies several important experimental observations and opens up a large range of future experiments. KW - hysteresis KW - mobile ions KW - perovskite solar cells Y1 - 2021 U6 - https://doi.org/10.1002/solr.202100772 SN - 2367-198X VL - 6 IS - 4 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Stolterfoht, Martin A1 - Grischek, Max A1 - Caprioglio, Pietro A1 - Wolff, Christian Michael A1 - Gutierrez-Partida, Emilio A1 - Peña-Camargo, Francisco A1 - Rothhardt, Daniel A1 - Zhang, Shanshan A1 - Raoufi, Meysam A1 - Wolansky, Jakob A1 - Abdi-Jalebi, Mojtaba A1 - Stranks, Samuel D. A1 - Albrecht, Steve A1 - Kirchartz, Thomas A1 - Neher, Dieter T1 - How to quantify the efficiency potential of neat perovskite films BT - Perovskite semiconductors with an implied efficiency exceeding 28% T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Perovskite photovoltaic (PV) cells have demonstrated power conversion efficiencies (PCE) that are close to those of monocrystalline silicon cells; however, in contrast to silicon PV, perovskites are not limited by Auger recombination under 1-sun illumination. Nevertheless, compared to GaAs and monocrystalline silicon PV, perovskite cells have significantly lower fill factors due to a combination of resistive and non-radiative recombination losses. This necessitates a deeper understanding of the underlying loss mechanisms and in particular the ideality factor of the cell. By measuring the intensity dependence of the external open-circuit voltage and the internal quasi-Fermi level splitting (QFLS), the transport resistance-free efficiency of the complete cell as well as the efficiency potential of any neat perovskite film with or without attached transport layers are quantified. Moreover, intensity-dependent QFLS measurements on different perovskite compositions allows for disentangling of the impact of the interfaces and the perovskite surface on the non-radiative fill factor and open-circuit voltage loss. It is found that potassium-passivated triple cation perovskite films stand out by their exceptionally high implied PCEs > 28%, which could be achieved with ideal transport layers. Finally, strategies are presented to reduce both the ideality factor and transport losses to push the efficiency to the thermodynamic limit. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1434 KW - non-radiative interface recombination KW - perovskite solar cells KW - photoluminescence Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516622 SN - 1866-8372 IS - 17 ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Grischek, Max A1 - Caprioglio, Pietro A1 - Wolff, Christian Michael A1 - Gutierrez-Partida, Emilio A1 - Peña-Camargo, Francisco A1 - Rothhardt, Daniel A1 - Zhang, Shanshan A1 - Raoufi, Meysam A1 - Wolansky, Jakob A1 - Abdi-Jalebi, Mojtaba A1 - Stranks, Samuel D. A1 - Albrecht, Steve A1 - Kirchartz, Thomas A1 - Neher, Dieter T1 - How to quantify the efficiency potential of neat perovskite films BT - Perovskite semiconductors with an implied efficiency exceeding 28% JF - Advanced Materials N2 - Perovskite photovoltaic (PV) cells have demonstrated power conversion efficiencies (PCE) that are close to those of monocrystalline silicon cells; however, in contrast to silicon PV, perovskites are not limited by Auger recombination under 1-sun illumination. Nevertheless, compared to GaAs and monocrystalline silicon PV, perovskite cells have significantly lower fill factors due to a combination of resistive and non-radiative recombination losses. This necessitates a deeper understanding of the underlying loss mechanisms and in particular the ideality factor of the cell. By measuring the intensity dependence of the external open-circuit voltage and the internal quasi-Fermi level splitting (QFLS), the transport resistance-free efficiency of the complete cell as well as the efficiency potential of any neat perovskite film with or without attached transport layers are quantified. Moreover, intensity-dependent QFLS measurements on different perovskite compositions allows for disentangling of the impact of the interfaces and the perovskite surface on the non-radiative fill factor and open-circuit voltage loss. It is found that potassium-passivated triple cation perovskite films stand out by their exceptionally high implied PCEs > 28%, which could be achieved with ideal transport layers. Finally, strategies are presented to reduce both the ideality factor and transport losses to push the efficiency to the thermodynamic limit. KW - non-radiative interface recombination KW - perovskite solar cells KW - photoluminescence Y1 - 2020 U6 - https://doi.org/10.1002/adma.202000080 SN - 0935-9648 SN - 1521-4095 VL - 32 IS - 17 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim ER -