TY - GEN A1 - Kettner, Marie Therese A1 - Oberbeckmann, Sonja A1 - Labrenz, Matthias A1 - Grossart, Hans-Peter T1 - The Eukaryotic Life on Microplastics in Brackish Ecosystems T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Microplastics (MP) constitute a widespread contaminant all over the globe. Rivers and wastewater treatment plants (WWTP) transport annually several million tons of MP into freshwaters, estuaries and oceans, where they provide increasing artificial surfaces for microbial colonization. As knowledge on MP-attached communities is insufficient for brackish ecosystems, we conducted exposure experiments in the coastal Baltic Sea, an in-flowing river and a WWTP within the drainage basin. While reporting on prokaryotic and fungal communities from the same set-up previously, we focus here on the entire eukaryotic communities. Using high-throughput 18S rRNA gene sequencing, we analyzed the eukaryotes colonizing on two types of MP, polyethylene and polystyrene, and compared them to the ones in the surrounding water and on a natural surface (wood). More than 500 different taxa across almost all kingdoms of the eukaryotic tree of life were identified on MP, dominated by Alveolata, Metazoa, and Chloroplastida. The eukaryotic community composition on MP was significantly distinct from wood and the surrounding water, with overall lower diversity and the potentially harmful dinoflagellate Pfiesteria being enriched on MP. Co-occurrence networks, which include prokaryotic and eukaryotic taxa, hint at possibilities for dynamic microbial interactions on MP. This first report on total eukaryotic communities on MP in brackish environments highlights the complexity of MP-associated biofilms, potentially leading to altered microbial activities and hence changes in ecosystem functions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 741 KW - microeukaryotes KW - plastic-associated biofilms KW - Baltic Sea KW - polyethylene KW - polystyrene KW - diversity profiles KW - network analysis KW - next-generation sequencing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-434996 SN - 1866-8372 IS - 741 ER - TY - JOUR A1 - Kettner, Marie Therese A1 - Oberbeckmann, Sonja A1 - Labrenz, Matthias A1 - Grossart, Hans-Peter T1 - The Eukaryotic Life on Microplastics in Brackish Ecosystems JF - Frontiers in Microbiology N2 - Microplastics (MP) constitute a widespread contaminant all over the globe. Rivers and wastewater treatment plants (WWTP) transport annually several million tons of MP into freshwaters, estuaries and oceans, where they provide increasing artificial surfaces for microbial colonization. As knowledge on MP-attached communities is insufficient for brackish ecosystems, we conducted exposure experiments in the coastal Baltic Sea, an in-flowing river and a WWTP within the drainage basin. While reporting on prokaryotic and fungal communities from the same set-up previously, we focus here on the entire eukaryotic communities. Using high-throughput 18S rRNA gene sequencing, we analyzed the eukaryotes colonizing on two types of MP, polyethylene and polystyrene, and compared them to the ones in the surrounding water and on a natural surface (wood). More than 500 different taxa across almost all kingdoms of the eukaryotic tree of life were identified on MP, dominated by Alveolata, Metazoa, and Chloroplastida. The eukaryotic community composition on MP was significantly distinct from wood and the surrounding water, with overall lower diversity and the potentially harmful dinoflagellate Pfiesteria being enriched on MP. Co-occurrence networks, which include prokaryotic and eukaryotic taxa, hint at possibilities for dynamic microbial interactions on MP. This first report on total eukaryotic communities on MP in brackish environments highlights the complexity of MP-associated biofilms, potentially leading to altered microbial activities and hence changes in ecosystem functions. KW - microeukaryotes KW - plastic-associated biofilms KW - Baltic Sea KW - polyethylene KW - polystyrene KW - diversity profiles KW - network analysis KW - next-generation sequencing Y1 - 2019 U6 - https://doi.org/10.3389/fmicb.2019.00538 SN - 1664-302X VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Arias Andrés, María de Jesús A1 - Kettner, Marie Therese A1 - Miki, Takeshi A1 - Grossart, Hans-Peter T1 - Microplastics: New substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - Heterotrophic microbes with the capability to process considerable amounts of organic matter can colonize microplastic particles (MP) in aquatic ecosystems. Weather colonization of microorganisms on MP will alter ecological niche and functioning of microbial communities remains still unanswered. Therefore, we compared the functional diversity of biofilms on microplastics when incubated in three lakes in northeastern Germany differing in trophy and limnological features. For all lakes, we compared heterotrophic activities of MP biofilms with those of microorganisms in the surrounding water by using Biolog (R) EcoPlates and assessed their oxygen consumption in microcosm assays with and without MP. The present study found that the total biofilm biomass was higher in the oligo-mesotrophic and dystrophic lakes than in the eutrophic lake. In all lakes, functional diversity profiles of MP biofilms consistently differed from those in the surrounding water. However, solely in the oligo-mesotrophic lake MP biofilms had a higher functional richness compared to the ambient water. These results demonstrate that the functionality and hence the ecological role of MP-associated microbial communities are context-dependent, i.e. different environments lead to substantial changes in biomass build up and heterotrophic activities of MP biofilms. We propose that MP surfaces act as new niches for aquatic microorganisms and that the constantly increasing MP pollution has the potential to globally impact carbon dynamics of pelagic environments by altering heterotrophic activities. (C) 2018 Elsevier B.V. All rights reserved. KW - Microplastics KW - Microorganisms KW - Biofilms KW - Total biomass KW - Heterotrophic activity KW - Functional diversity KW - Multi-functionality index Y1 - 2018 U6 - https://doi.org/10.1016/j.scitotenv.2018.04.199 SN - 0048-9697 SN - 1879-1026 VL - 635 SP - 1152 EP - 1159 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Eckert, Ester M. A1 - Di Cesare, Andrea A1 - Kettner, Marie Therese A1 - Arias-Andres, Maria A1 - Fontaneto, Diego A1 - Grossart, Hans-Peter A1 - Corno, Gianluca T1 - Microplastics increase impact of treated wastewater on freshwater microbial community JF - Environmental pollution N2 - Plastic pollution is a major global concern with several million microplastic particles entering every day freshwater ecosystems via wastewater discharge. Microplastic particles stimulate biofilm formation (plastisphere) throughout the water column and have the potential to affect microbial community structure if they accumulate in pelagic waters, especially enhancing the proliferation of biohazardous bacteria. To test this scenario, we simulated the inflow of treated wastewater into a temperate lake using a continuous culture system with a gradient of concentration of microplastic particles. We followed the effect of microplastics on the microbial community structure and on the occurrence of integrase 1 (intl), a marker associated with mobile genetic elements known as a proxy for anthropogenic effects on the spread of antimicrobial resistance genes. The abundance of intl increased in the plastisphere with increasing microplastic particle concentration, but not in the water surrounding the microplastic particles. Likewise, the microbial community on microplastic was more similar to the original wastewater community with increasing microplastic concentrations. Our results show that microplastic particles indeed promote persistence of typical indicators of microbial anthropogenic pollution in natural waters, and substantiate that their removal from treated wastewater should be prioritised. (C) 2017 Elsevier Ltd. All rights reserved. KW - Microplastics KW - Anthropogenic pollution KW - Treated wastewater KW - Freshwater microbial communities KW - Integrase 1 KW - Biofilm Y1 - 2017 U6 - https://doi.org/10.1016/j.envpol.2017.11.070 SN - 0269-7491 SN - 1873-6424 VL - 234 SP - 495 EP - 502 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kettner, Marie Therese A1 - Rojas-Jimenez, Keilor A1 - Oberbeckmann, Sonja A1 - Labrenz, Matthias A1 - Großart, Hans-Peter T1 - Microplastics alter composition of fungal communities in aquatic ecosystems JF - Environmental microbiology N2 - Despite increasing concerns about microplastic (MP) pollution in aquatic ecosystems, there is insufficient knowledge on how MP affect fungal communities. In this study, we explored the diversity and community composition of fungi attached to polyethylene (PE) and polystyrene (PS) particles incubated in different aquatic systems in north-east Germany: the Baltic Sea, the River Warnow and a wastewater treatment plant. Based on next generation 18S rRNA gene sequencing, 347 different operational taxonomic units assigned to 81 fungal taxa were identified on PE and PS. The MP-associated communities were distinct from fungal communities in the surrounding water and on the natural substrate wood. They also differed significantly among sampling locations, pointing towards a substrate and location specific fungal colonization. Members of Chytridiomycota, Cryptomycota and Ascomycota dominated the fungal assemblages, suggesting that both parasitic and saprophytic fungi thrive in MP biofilms. Thus, considering the worldwide increasing accumulation of plastic particles as well as the substantial vector potential of MP, especially these fungal taxa might benefit from MP pollution in the aquatic environment with yet unknown impacts on their worldwide distribution, as well as biodiversity and food web dynamics at large. Y1 - 2017 U6 - https://doi.org/10.1111/1462-2920.13891 SN - 1462-2912 SN - 1462-2920 VL - 19 SP - 4447 EP - 4459 PB - Wiley CY - Hoboken ER - TY - THES A1 - Kettner, Marie Therese T1 - Microbial colonization of microplastic particles in aquatic systems T1 - Mikrobielle Besiedlung von Mikroplastik-Partikeln in aquatischen Systemen N2 - The continuously increasing pollution of aquatic environments with microplastics (plastic particles < 5 mm) is a global problem with potential implications for organisms of all trophic levels. For microorganisms, trillions of these floating microplastics particles represent a huge surface area for colonization. Due to the very low biodegradability, microplastics remain years to centuries in the environment and can be transported over thousands of kilometers together with the attached organisms. Since also pathogenic, invasive, or otherwise harmful species could be spread this way, it is essential to study microplastics-associated communities. For this doctoral thesis, eukaryotic communities were analyzed for the first time on microplastics in brackish environments and compared to communities in the surrounding water and on the natural substrate wood. With Illumina MiSeq high-throughput sequencing, more than 500 different eukaryotic taxa were detected on the microplastics samples. Among them were various green algae, dinoflagellates, ciliates, fungi, fungal-like protists and small metazoans such as nematodes and rotifers. The most abundant organisms was a dinoflagellate of the genus Pfiesteria, which could include fish pathogenic and bloom forming toxigenic species. Network analyses revealed that there were numerous interaction possibilities among prokaryotes and eukaryotes in microplastics biofilms. Eukaryotic community compositions on microplastics differed significantly from those on wood and in water, and compositions were additionally distinct among the sampling locations. Furthermore, the biodiversity was clearly lower on microplastics in comparison to the diversity on wood or in the surrounding water. In another experiment, a situation was simulated in which treated wastewater containing microplastics was introduced into a freshwater lake. With increasing microplastics concentrations, the resulting bacterial communities became more similar to those from the treated wastewater. Moreover, the abundance of integrase I increased together with rising concentrations of microplastics. Integrase I is often used as a marker for anthropogenic environmental pollution and is further linked to genes conferring, e.g., antibiotic resistance. This dissertation gives detailed insights into the complexity of prokaryotic and eukaryotic communities on microplastics in brackish and freshwater systems. Even though microplastics provide novel microhabitats for various microbes, they might also transport toxigenic, pathogenic, antibiotic-resistant or parasitic organisms; meaning their colonization can pose potential threats to humans and the environment. Finally, this thesis explains the urgent need for more research as well as for strategies to minimize the global microplastic pollution. N2 - Die stetig steigende Verschmutzung der Gewässer mit Mikroplastik (Plastikteilchen < 5 mm) ist ein weltweites Umweltproblem und wirkt sich potentiell auf Organismen aller trophischen Ebenen aus. Für Mikroorganismen stellen Billionen dieser schwimmenden Mikroplastik-partikel eine riesige Fläche zur Besiedlung dar. Aufgrund der sehr schlechten Abbaubarkeit verbleibt Mikroplastik Jahre bis Jahrhunderte in der Umwelt und kann samt der angehefteten Organismen über mehrere Tausend Kilometer weit transportiert werden. Da sich darüber auch pathogene, invasive oder anderweitig gefährliche Arten verbreiten könnten, ist es essentiell, die Mikroplastik-assoziierten Gemeinschaften zu untersuchen. Im Rahmen dieser Doktorarbeit wurden erstmals die eukaryotischen Gemeinschaften auf Mikroplastik in Brackwasser-Habitaten analysiert und mit Gemeinschaften aus dem umgebenden Wasser und auf dem natürlichen Substrat Holz verglichen. Mit Illumina MiSeq Hochdurchsatz-Sequenzierungs-Verfahren wurde ermittelt, dass über 500 verschiedene eukaryotische Taxa auf den Mikroplastikproben vorkamen. Dazu gehörten unterschiedliche Grünalgen, Dinoflagellaten, Ciliaten, Pilze, pilz-ähnliche Protisten und kleine Metazoen wie Fadenwürmer oder Rädertierchen. Am häufigsten kamen Dinoflagellaten der Gattung Pfiesteria vor, zu der möglicherweise fischpathogene und toxische Algenblüten-bildende Arten gehören könnten. Netzwerk-Analysen zeigten, dass es auf Mikroplastik eine Vielzahl von Interaktionsmöglichkeiten zwischen den vorhandenen Eukaryoten und Prokaryoten gibt. Die Zusammensetzungen der Eukaryoten-Gemeinschaften auf Mikroplastik unterschieden sich signifikant von jenen auf Holz und im umgebenden Wasser, aber auch zwischen den verschiedenen Probenahme-Standorten. Die Mikroplastikproben wiesen im Vergleich zu Wasser und Holz die geringste Biodiversität auf. In einem weiteren Experiment wurde simuliert, dass Mikroplastik-haltiges Wasser aus dem Ablauf einer Kläranlage in einen See eingeleitet wird. Bei hohen Mikroplastikkonzentrationen reicherten sich besonders Bakterien aus dem Kläranlagenablauf an. Zudem hatten die Bakteriengemeinschaften auf Mikroplastik ein signifikant erhöhtes Vorkommen eines bestimmten genetischen Markers (Integrase I), welcher auf anthropogene Umweltverschmutzung hindeutet, sowie mit Genen verknüpft ist, die z. B. Antibiotika-Resistenzen übertragen können. Die Versuchsergebnisse dieser Doktorarbeit zeigen einerseits, wie komplex und vielseitig das mikrobielle Leben auf Mikroplastik sein kann, andererseits könnten diese Partikel aber auch Transportvehikel für toxische, pathogene, antibiotika-resistente oder parasitäre Organismen darstellen. Somit birgt ihre Besiedlung potentielle Gefahren für Mensch und Umwelt. Darüber hinaus weist diese Arbeit auf dringenden Forschungsbedarf hin und verdeutlicht die Notwendigkeit der Eindämmung der globalen Mikroplastik-Verschmutzung. KW - microplastics KW - eukaryotes KW - sequencing KW - fungi KW - biofilm KW - biodiversity KW - Biodiversität KW - Biofilm KW - Eukaryoten KW - Pilze KW - Mikroplastik KW - Sequenzierung Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418854 ER - TY - JOUR A1 - Wurzbacher, Christian A1 - Attermeyer, Katrin A1 - Kettner, Marie Therese A1 - Flintrop, Clara A1 - Warthmann, Norman A1 - Hilt, Sabine A1 - Grossart, Hans-Peter A1 - Monaghan, Michael T. T1 - DNA metabarcoding of unfractionated water samples relates phyto-, zoo- and bacterioplankton dynamics and reveals a single-taxon bacterial bloom JF - Environmental microbiology reports N2 - Most studies of aquatic plankton focus on either macroscopic or microbial communities, and on either eukaryotes or prokaryotes. This separation is primarily for methodological reasons, but can overlook potential interactions among groups. Here we tested whether DNA metabarcoding of unfractionated water samples with universal primers could be used to qualitatively and quantitatively study the temporal dynamics of the total plankton community in a shallow temperate lake. Significant changes in the relative proportions of normalized sequence reads of eukaryotic and prokaryotic plankton communities over a 3-month period in spring were found. Patterns followed the same trend as plankton estimates measured using traditional microscopic methods. The bloom of a conditionally rare bacterial taxon belonging to Arcicella was characterized, which rapidly came to dominate the whole lake ecosystem and would have remained unnoticed without metabarcoding. The data demonstrate the potential of universal DNA metabarcoding applied to unfractionated samples for providing a more holistic view of plankton communities. Y1 - 2017 U6 - https://doi.org/10.1111/1758-2229.12540 SN - 1758-2229 VL - 9 SP - 383 EP - 388 PB - Wiley CY - Hoboken ER -