TY - JOUR A1 - Meyer, Dominique M.-A. A1 - Petrov, Mykola A1 - Pohl, Martin T1 - Wind nebulae and supernova remnants of very massive stars JF - Monthly notices of the Royal Astronomical Society N2 - A very small fraction of (runaway) massive stars have masses exceeding 60-70 M-circle dot and are predicted to evolve as luminous blue variable and Wolf-Rayet stars before ending their lives as core-collapse supernovae. Our 2D axisymmetric hydrodynamical simulations explore how a fast wind (2000 km s(-1)) and high mass-loss rate (10(-5)M(circle dot) yr(-1)) can impact the morphology of the circumstellar medium. It is shaped as 100 pc-scale wind nebula that can be pierced by the driving star when it supersonically moves with velocity 20-40 km s(-1) through the interstellar medium (ISM) in the Galactic plane. The motion of such runaway stars displaces the position of the supernova explosion out of their bow shock nebula, imposing asymmetries to the eventual shock wave expansion and engendering Cygnus-loop-like supernova remnants. We conclude that the size (up to more than 200 pc) of the filamentary wind cavity in which the chemically enriched supernova ejecta expand, mixing efficiently the wind and ISM materials by at least 10 per cent in number density, can be used as a tracer of the runaway nature of the very massive progenitors of such 0.1Myr old remnants. Our results motivate further observational campaigns devoted to the bow shock of the very massive stars BD+43 degrees 3654 and to the close surroundings of the synchrotron-emitting Wolf-Rayet shell G2.4+1.4. KW - shock waves KW - methods: numerical KW - circumstellar matter KW - stars: massive Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa554 SN - 0035-8711 SN - 1365-2966 VL - 493 IS - 3 SP - 3548 EP - 3564 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Sparre, Martin A1 - Pfrommer, Christoph A1 - Vogelsberger, Mark T1 - The physics of multiphase gas flows BT - fragmentation of a radiatively cooling gas cloud in a hot wind JF - Monthly notices of the Royal Astronomical Society N2 - Galactic winds exhibit a multiphase structure that consists of hot-diffuse and cold-dense phases. Here we present high-resolution idealized simulations of the interaction of a hot supersonic wind with a cold cloud with the moving-mesh code AREPO in setups with and without radiative cooling. We demonstrate that cooling causes clouds with sizes larger than the cooling length to fragment in 2D and 3D simulations. We confirm earlier 2D simulations by McCourt et al. (2018) and highlight differences of the shattering processes of 3D clouds that are exposed to a hot wind. The fragmentation process is quantified with a friends-of-friends analysis of shattered cloudlets and density power spectra. Those show that radiative cooling causes the power spectral index to gradually increase when the initial cloud radius is larger than the cooling length and with increasing time until the cloud is fully dissolved in the hot wind. A resolution of around 1 pc is required to reveal the effect of cooling-induced fragmentation of a 100 pc outflowing cloud. Thus, state-of-the-art cosmological zoom simulations of the circumgalactic medium fall short by orders of magnitudes from resolving this fragmentation process. This physics is, however, necessary to reliably model observed column densities and covering fractions of Lyman alpha haloes, high-velocity clouds, and broad-line regions of active galactic nuclei. KW - methods: numerical KW - ISM: jets and outflows KW - galaxies: formation Y1 - 2018 U6 - https://doi.org/10.1093/mnras/sty3063 SN - 0035-8711 SN - 1365-2966 VL - 482 IS - 4 SP - 5401 EP - 5421 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Despali, Giulia A1 - Sparre, Martin A1 - Vegetti, Simona A1 - Vogelsberger, Mark A1 - Zavala, Jesús A1 - Marinacci, Federico T1 - The interplay of self-interacting dark matter and baryons in shaping the halo evolution JF - Monthly notices of the Royal Astronomical Society N2 - We use high-resolution hydrodynamical simulation to test the difference of halo properties in cold dark matter (CDM) and a self-interacting dark matter (SIDM) scenario with a constant cross-section of sigma(T)/m(x) = 1 cm(2) g(-1). We find that the interplay between dark matter self-interaction and baryonic physics induces a complex evolution of the halo properties, which depends on the halo mass and morphological type, as well as on the halo mass accretion history. While high-mass haloes, selected as analogues of early-type galaxies, show cored profiles in the SIDM run, systems of intermediate mass and with a significant disc component can develop a profile that is similar or cuspier than in CDM. The final properties of SIDM haloes - measured at z = 0.2 - correlate with the halo concentration and formation time, suggesting that the differences between different systems are due to the fact that we are observing the impact of self-interaction. We also search for signatures of SIDM in the lensing signal of the main haloes and find hints of potential differences in the distribution of Einstein radii, which suggests that future wide-field survey might be able to distinguish between CDM and SIDM models on this basis. Finally, we find that the subhalo abundances are not altered in the adopted SIDM model with respect to CDM. KW - gravitational lensing: strong KW - methods: numerical KW - galaxies: haloes KW - dark matter Y1 - 2019 U6 - https://doi.org/10.1093/mnras/stz273 SN - 0035-8711 SN - 1365-2966 VL - 484 IS - 4 SP - 4563 EP - 4573 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Whittingham, Joseph A1 - Sparre, Martin A1 - Pfrommer, Christoph A1 - Pakmor, Rüdiger T1 - The impact of magnetic fields on cosmological galaxy mergers BT - I. Reshaping gas and stellar discs JF - Monthly notices of the Royal Astronomical Society N2 - Mergers play an important role in galaxy evolution. In particular, major mergers are able to have a transformative effect on galaxy morphology. In this paper, we investigate the role of magnetic fields in gas-rich major mergers. To this end, we run a series of high-resolution magnetohydrodynamic (MHD) zoom-in simulations with the moving-mesh code arepo and compare the outcome with hydrodynamic simulations run from the same initial conditions. This is the first time that the effect of magnetic fields in major mergers has been investigated in a cosmologically consistent manner. In contrast to previous non-cosmological simulations, we find that the inclusion of magnetic fields has a substantial impact on the production of the merger remnant. Whilst magnetic fields do not strongly affect global properties, such as the star formation history, they are able to significantly influence structural properties. Indeed, MHD simulations consistently form remnants with extended discs and well-developed spiral structure, whilst hydrodynamic simulations form more compact remnants that display distinctive ring morphology. We support this work with a resolution study and show that whilst global properties are broadly converged across resolution and physics models, morphological differences only develop given sufficient resolution. We argue that this is due to the more efficient excitement of a small-scale dynamo in higher resolution simulations, resulting in a more strongly amplified field that is better able to influence gas dynamics. KW - MHD KW - methods: numerical KW - galaxies: interactions KW - galaxies: magnetic KW - fields Y1 - 2021 U6 - https://doi.org/10.1093/mnras/stab1425 SN - 0035-8711 SN - 1365-2966 VL - 506 IS - 1 SP - 229 EP - 255 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hani, Maan H. A1 - Ellison, Sara L. A1 - Sparre, Martin A1 - Grand, Robert J. J. A1 - Pakmor, Rüdiger A1 - Gómez, Facundo A. A1 - Springel, Volker T1 - The diversity of the circumgalactic medium around z=0 Milky Way-mass galaxies from the Auriga simulations JF - Monthly notices of the Royal Astronomical Society N2 - Galaxies are surrounded by massive gas reservoirs ( i.e. the circumgalactic medium; CGM) which play a key role in their evolution. The properties of the CGM, which are dependent on a variety of internal and environmental factors, are often inferred from absorption line surveys which rely on a limited number of single lines-of-sight. In this work we present an analysis of 28 galaxy haloes selected from the Auriga project, a cosmological magneto-hydrodynamical zoom-in simulation suite of isolated MilkyWay-mass galaxies, to understand the impact of CGM diversity on observational studies. Although the Auriga haloes are selected to populate a narrow range in halo mass, our work demonstrates that the CGM of L-star galaxies is extremely diverse: column densities of commonly observed species span similar to 3-4 dex and their covering fractions range from similar to 5 to 90 per cent. Despite this diversity, we identify the following correlations: 1) the covering fractions ( CF) of hydrogen and metals of the Auriga haloes positively correlate with stellar mass, 2) the CF of H I, C IV, and Si II anticorrelate with active galactic nucleus luminosity due to ionization effects, and 3) the CF of H I, C IV, and Si II positively correlate with galaxy disc fraction due to outflows populating the CGM with cool and dense gas. The Auriga sample demonstrates striking diversity within the CGM of L-star galaxies, which poses a challenge for observations reconstructing CGM characteristics from limited samples, and also indicates that long-term merger assembly history and recent star formation are not the dominant sculptors of the CGM. KW - methods: numerical KW - galaxies: evolution KW - galaxies: haloes Y1 - 2019 U6 - https://doi.org/10.1093/mnras/stz1708 SN - 0035-8711 SN - 1365-2966 VL - 488 IS - 1 SP - 135 EP - 152 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Nuza, Sebastian E. A1 - Parisi, Florencia A1 - Scannapieco, Cecilia A1 - Richter, Philipp A1 - Gottloeber, Stefan A1 - Steinmetz, Matthias T1 - The distribution of gas in the Local Group from constrained cosmological simulations: the case for Andromeda and the Milky Way galaxies JF - Monthly notices of the Royal Astronomical Society N2 - We study the gas distribution in the Milky Way and Andromeda using a constrained cosmological simulation of the Local Group (LG) within the context of the CLUES (Constrained Local UniversE Simulations) project. We analyse the properties of gas in the simulated galaxies at z = 0 for three different phases: 'cold', 'hot' and H i, and compare our results with observations. The amount of material in the hot halo (M-hot a parts per thousand 4-5 x 10(10) M-aS (TM)), and the cold (M-cold(r a parts per thousand(2) 10 kpc) a parts per thousand 10(8) M-aS (TM)) and H i components displays reasonable agreement with observations. We also compute the accretion/ejection rates together with the H i (radial and all-sky) covering fractions. The integrated H i accretion rate within r = 50 kpc gives similar to 0.2-0.3 M-aS (TM) yr(-1), i.e. close to that obtained from high-velocity clouds in the Milky Way. We find that the global accretion rate is dominated by hot material, although ionized gas with T a parts per thousand(2) 10(5) K can contribute significantly too. The net accretion rates of all material at the virial radii are 6-8 M-aS (TM) yr(-1). At z = 0, we find a significant gas excess between the two galaxies, as compared to any other direction, resulting from the overlap of their gaseous haloes. In our simulation, the gas excess first occurs at z similar to 1, as a result of the kinematical evolution of the LG. KW - methods: numerical KW - Galaxy: halo KW - intergalactic medium KW - Local Group KW - large-scale structure of Universe Y1 - 2014 U6 - https://doi.org/10.1093/mnras/stu643 SN - 0035-8711 SN - 1365-2966 VL - 441 IS - 3 SP - 2593 EP - 2612 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Kobzar, Oleh A1 - Niemiec, Jacek A1 - Pohl, Martin A1 - Bohdan, Artem T1 - Spatio-temporal evolution of the non-resonant instability in shock precursors of young supernova remnants JF - Monthly notices of the Royal Astronomical Society N2 - A non-resonant cosmic ray (CR) current-driven instability may operate in the shock precursors of young supernova remnants and be responsible for magnetic-field amplification, plasma heating and turbulence. Earlier simulations demonstrated magnetic-field amplification, and in kinetic studies a reduction of the relative drift between CRs and thermal plasma was observed as backreaction. However, all published simulations used periodic boundary conditions, which do not account for mass conservation in decelerating flows and only allow the temporal development to be studied. Here we report results of fully kinetic particle-in-cell simulations with open boundaries that permit inflow of plasma on one side of the simulation box and outflow at the other end, hence allowing an investigation of both the temporal and the spatial development of the instability. Magnetic-field amplification proceeds as in studies with periodic boundaries and, observed here for the first time, the reduction of relative drifts causes the formation of a shock-like compression structure at which a fraction of the plasma ions are reflected. Turbulent electric field generated by the non-resonant instability inelastically scatters CRs, modifying and anisotropizing their energy distribution. Spatial CR scattering is compatible with Bohm diffusion. Electromagnetic turbulence leads to significant non-adiabatic heating of the background plasma maintaining bulk equipartition between ions and electrons. The highest temperatures are reached at sites of large-amplitude electrostatic fields. Ion spectra show supra-thermal tails resulting from stochastic scattering in the turbulent electric field. Together, these modifications in the plasma flow will affect the properties of the shock and particle acceleration there. KW - acceleration of particles KW - shock waves KW - turbulence KW - methods: numerical KW - cosmic rays KW - ISM: supernova remnants Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx1201 SN - 0035-8711 SN - 1365-2966 VL - 469 SP - 4985 EP - 4998 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Holler, M. A1 - Schoeck, F. M. A1 - Eger, P. A1 - Kiessling, D. A1 - Valerius, K. A1 - Stegmann, Christian T1 - Spatially resolved X-ray spectroscopy and modeling of the nonthermal emission of the pulsar wind nebula in G0.9+0.1 JF - ASTRONOMY & ASTROPHYSICS N2 - Aims. We performed a spatially resolved spectral X-ray study of the pulsar wind nebula ( PWN) in the supernova remnant G0.9+ 0.1. Furthermore, we modeled its nonthermal emission in the X-ray and very high-energy (VHE, E > 100 GeV) gamma-ray regime. Methods. Using Chandra ACIS-S3 data, we investigated the east-west dependence of the spectral properties of G0.9+ 0.1 by calculating hardness ratios. We analyzed the EPIC-MOS and EPIC-pn data of two on-axis observations of the XMM-Newton telescope and extracted spectra of four annulus-shaped regions, centered on the region of brightest emission of the source. A radially symmetric leptonic model was applied in order to reproduce the observed X-ray emission of the inner part of the PWN. Using the optimized model parameter values obtained from the X-ray analysis, we then compared the modeled inverse Compton (IC) radiation with the published H.E.S.S. gamma-ray data. Results. The spectral index within the four annuli increases with growing distance to the pulsar, whereas the surface brightness drops. With the adopted model we are able to reproduce the characteristics of the X-ray spectra. The model results for the VHE. radiation, however, strongly deviate from the H.E.S.S. data. KW - rays: individuals: G0.9+0.1 KW - ISM: supernova remnants KW - ISM: individual objects: G0.9+0.1-radiation mechanisms: non-thermal KW - methods: numerical Y1 - 2012 U6 - https://doi.org/10.1051/0004-6361/201118121 SN - 0004-6361 VL - 539 IS - 2 PB - EDP SCIENCES S A CY - LES ULIS CEDEX A ER - TY - JOUR A1 - Meyer, Dominique M.-A. A1 - Kreplin, Alexander A1 - Kraus, S. A1 - Vorobyov, E. I. A1 - Haemmerlé, Lionel A1 - Eislöffel, Jochen T1 - On the ALMA observability of nascent massive multiple systems formed by gravitational instability JF - Monthly notices of the Royal Astronomical Society N2 - Massive young stellar objects (MYSOs) form during the collapse of high-mass pre-stellar cores, where infalling molecular material is accreted through a centrifugally balanced accretion disc that is subject to efficient gravitational instabilities. In the resulting fragmented accretion disc of the MYSO, gaseous clumps and low-mass stellar companions can form, which will influence the future evolution of massive protostars in the Hertzsprung-Russell diagram. We perform dust continuum radiative transfer calculations and compute synthetic images of disc structures modelled by the gravito-radiation-hydrodynamics simulation of a forming MYSO, in order to investigate the Atacama Large Millimeter/submillimeter Array (alma) observability of circumstellar gaseous clumps and forming multiple systems. Both spiral arms and gaseous clumps located at similar or equal to a few from the protostar can be resolved by interferometric alma Cycle 7 C43-8 and C43-10 observations at band 6 (), using a maximal 0.015 aracsec beam angular resolution and at least exposure time for sources at distances of . Our study shows that substructures are observable regardless of their viewing geometry or can be inferred in the case of an edge-viewed disc. The observation probability of the clumps increases with the gradually increasing efficiency of gravitational instability at work as the disc evolves. As a consequence, large discs around MYSOs close to the zero-age-main-sequence line exhibit more substructures than at the end of the gravitational collapse. Our results motivate further observational campaigns devoted to the close surroundings of the massive protostars S255IR-NIRS3 and NGC 6334I-MM1, whose recent outbursts are a probable signature of disc fragmentation and accretion variability. KW - radiative transfer KW - methods: numerical KW - stars: circumstellar matter Y1 - 2019 U6 - https://doi.org/10.1093/mnras/stz1585 SN - 0035-8711 SN - 1365-2966 VL - 487 IS - 4 SP - 4473 EP - 4491 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Niemiec, Jacek A1 - Pohl, Martin A1 - Bret, Antoine A1 - Wieland, Volkmar T1 - Nonrelativistic parallel shocks in unmagnetized and weakly magnetized plasmas JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present results of 2D3V particle-in-cell simulations of nonrelativistic plasma collisions with absent or parallel large-scale magnetic field for parameters applicable to the conditions at young supernova remnants. We study the collision of plasma slabs of different density, leading to two different shocks and a contact discontinuity. Electron dynamics play an important role in the development of the system. While nonrelativistic shocks in both unmagnetized and magnetized plasmas can be mediated by Weibel-type instabilities, the efficiency of shock-formation processes is higher when a large-scale magnetic field is present. The electron distributions downstream of the forward and reverse shocks are generally isotropic, whereas that is not always the case for the ions. We do not see any significant evidence of pre-acceleration, neither in the electron population nor in the ion distribution. KW - acceleration of particles KW - instabilities KW - ISM: supernova remnants KW - methods: numerical KW - plasmas KW - shock waves Y1 - 2012 U6 - https://doi.org/10.1088/0004-637X/759/1/73 SN - 0004-637X SN - 1538-4357 VL - 759 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Steppa, Constantin A1 - Egberts, Kathrin T1 - Modelling the Galactic very-high-energy gamma-ray source population JF - Astronomy and astrophysics : an international weekly journal N2 - Context. The High Energy Stereoscopic System Galactic plane survey (HGPS) is to date the most comprehensive census of Galactic gamma -ray sources at very high energies (VHE; 100 GeV <= E <= 100 TeV). As a consequence of the limited sensitivity of this survey, the 78 detected gamma -ray sources comprise only a small and biased subsample of the overall population. The larger part consists of currently unresolved sources, which contribute to large-scale diffuse emission to a still uncertain amount.Aims. We study the VHE gamma -ray source population in the Milky Way. For this purpose population-synthesis models are derived based on the distributions of source positions, extents, and luminosities.Methods. Several azimuth-symmetric and spiral-arm models are compared for spatial source distribution. The luminosity and radius function of the population are derived from the source properties of the HGPS data set and are corrected for the sensitivity bias of the HGPS. Based on these models, VHE source populations are simulated and the subsets of sources detectable according to the HGPS are compared with HGPS sources.Results. The power-law indices of luminosity and radius functions are determined to range between -1.6 and -1.9 for luminosity and -1.1 and -1.6 for radius. A two-arm spiral structure with central bar is discarded as spatial distribution of VHE sources, while azimuth-symmetric distributions and a distribution following a four-arm spiral structure without bar describe the HGPS data reasonably well. The total number of Galactic VHE sources is predicted to be in the range from 800 to 7000 with a total luminosity and flux of (1.6-6.3) x 10(36) ph s(-1) and (3-15) x 10(-10) ph cm(-2) s(-1), respectively.Conclusions. Depending on the model, the HGPS sample accounts for (68-87)% of the emission of the population in the scanned region. This suggests that unresolved sources represent a critical component of the diffuse emission measurable in the HGPS. With the foreseen jump in sensitivity of the Cherenkov Telescope Array, the number of detectable sources is predicted to increase by a factor between 5 and 9. KW - astroparticle physics KW - gamma rays: general KW - gamma rays: diffuse KW - background KW - methods: observational KW - methods: numerical Y1 - 2020 U6 - https://doi.org/10.1051/0004-6361/202038172 SN - 0004-6361 SN - 1432-0746 VL - 643 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Bustamante, Sebastian A1 - Sparre, Martin A1 - Springel, Volker A1 - Grand, Robert J. J. T1 - Merger-induced metallicity dilution in cosmological galaxy formation simulations JF - Monthly notices of the Royal Astronomical Society N2 - Observational studies have revealed that galaxy pairs tend to have lower gas-phase metallicity than isolated galaxies. This metallicity deficiency can be caused by inflows of low-metallicity gas due to the tidal forces and gravitational torques associated with galaxy mergers, diluting the metal content of the central region. In this work we demonstrate that such metallicity dilution occurs in state-of-the-art cosmological simulations of galaxy formation. We find that the dilution is typically 0.1 dex for major mergers, and is noticeable at projected separations smaller than 40 kpc. For minor mergers the metallicity dilution is still present, even though the amplitude is significantly smaller. Consistent with previous analysis of observed galaxies we find that mergers are outliers from the fundamental metallicity relation, with deviations being larger than expected for a Gaussian distribution of residuals. Our large sample of mergers within full cosmological simulations also makes it possible to estimate how the star formation rate enhancement and gas consumption timescale behave as a function of the merger mass ratio. We confirm that strong starbursts are likely to occur in major mergers, but they can also arise in minor mergers if more than two galaxies are participating in the interaction, a scenario that has largely been ignored in previous work based on idealised isolated merger simulations. KW - methods: numerical KW - galaxies: interactions KW - galaxies: star formation KW - galaxies: evolution Y1 - 2018 U6 - https://doi.org/10.1093/mnras/sty1692 SN - 0035-8711 SN - 1365-2966 VL - 479 IS - 3 SP - 3381 EP - 3392 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Mizuno, Yosuke A1 - Pohl, Martin A1 - Niemiec, Jacek A1 - Zhang, Bing A1 - Nishikawa, Ken-Ichi A1 - Hardee, Philip E. T1 - Magnetic-field amplification by turbulence in a relativistic shockpropagating through an inhomogeneous medium JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We perform two-dimensional relativistic magnetohydrodynamic simulations of a mildly relativistic shock propagating through an inhomogeneous medium. We show that the postshock region becomes turbulent owing to preshock density inhomogeneity, and the magnetic field is strongly amplified due to the stretching and folding of field lines in the turbulent velocity field. The amplified magnetic field evolves into a filamentary structure in two-dimensional simulations. The magnetic energy spectrum is flatter than the Kolmogorov spectrum and indicates that a so-called small-scale dynamo is occurring in the postshock region. We also find that the amount of magnetic-field amplification depends on the direction of the mean preshock magnetic field, and the timescale of magnetic-field growth depends on the shock strength. KW - gamma-ray burst: general KW - magnetohydrodynamics (MHD) KW - methods: numerical KW - relativistic processes KW - shock waves KW - turbulence Y1 - 2011 U6 - https://doi.org/10.1088/0004-637X/726/2/62 SN - 0004-637X VL - 726 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Mizuno, Yosuke A1 - Pohl, Martin A1 - Niemiec, Jacek A1 - Zhang, Bing A1 - Nishikawa, Ken-Ichi A1 - Hardee, Philip E. T1 - Magnetic field amplification and saturation in turbulence behind a relativistic shock JF - Monthly notices of the Royal Astronomical Society N2 - We have investigated via 2D relativistic magnetohydrodynamic simulations the long-term evolution of turbulence created by a relativistic shock propagating through an inhomogeneous medium. In the post-shock region, magnetic field is strongly amplified by turbulent motions triggered by pre-shock density inhomogeneities. Using a long-simulation box we have followed the magnetic field amplification until it is fully developed and saturated. The turbulent velocity is subrelativistic even for a strong shock. Magnetic field amplification is controlled by the turbulent motion and saturation occurs when the magnetic energy is comparable to the turbulent kinetic energy. Magnetic field amplification and saturation depend on the initial strength and direction of the magnetic field in the pre-shock medium, and on the shock strength. If the initial magnetic field is perpendicular to the shock normal, the magnetic field is first compressed at the shock and then can be amplified by turbulent motion in the post-shock region. Saturation occurs when the magnetic energy becomes comparable to the turbulent kinetic energy in the post-shock region. If the initial magnetic field in the pre-shock medium is strong, the post-shock region becomes turbulent but significant field amplification does not occur. If the magnetic energy after shock compression is larger than the turbulent kinetic energy in the post-shock region, significant field amplification does not occur. We discuss possible applications of our results to gamma-ray bursts and active galactic nuclei. KW - MHD KW - relativistic processes KW - shock waves KW - turbulence KW - methods: numerical KW - gamma-ray burst: general Y1 - 2014 U6 - https://doi.org/10.1093/mnras/stu196 SN - 0035-8711 SN - 1365-2966 VL - 439 IS - 4 SP - 3490 EP - 3503 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Bohdan, Artem A1 - Niemiec, Jacek A1 - Pohl, Martin A1 - Matsumoto, Yosuke A1 - Amano, Takanobu A1 - Hoshino, Masahiro T1 - Kinetic Simulations of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants BT - I. Electron Shock-surfing Acceleration JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Electron injection at high Mach number nonrelativistic perpendicular shocks is studied here for parameters that are applicable to young SNR shocks. Using high-resolution large-scale two-dimensional fully kinetic particle-in-cell simulations and tracing individual particles, we in detail analyze the shock-surfing acceleration (SSA) of electrons at the leading edge of the shock foot. The central question is to what degree the process can be captured in 2D3V simulations. We find that the energy gain in SSA always arises from the electrostatic field of a Buneman wave. Electron energization is more efficient in the out-of-plane orientation of the large-scale magnetic field because both the phase speed and the amplitude of the waves are higher than for the in-plane scenario. Also, a larger number of electrons is trapped by the waves compared to the in-plane configuration. We conclude that significant modifications of the simulation parameters are needed to reach the same level of SSA efficiency as in simulations with out-of-plane magnetic field or 3D simulations. KW - acceleration of particles KW - instabilities KW - ISM: supernova remnants KW - methods: numerical KW - plasmas KW - shock waves Y1 - 2019 U6 - https://doi.org/10.3847/1538-4357/ab1b6d SN - 0004-637X SN - 1538-4357 VL - 878 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Sparre, Martin A1 - Pfrommer, Christoph A1 - Ehlert, Kristian T1 - Interaction of a cold cloud with a hot wind BT - the regimes of cloud growth and destruction and the impact of magnetic fields JF - Monthly notices of the Royal Astronomical Society N2 - Multiphase galaxy winds, the accretion of cold gas through galaxy haloes, and gas stripping from jellyfish galaxies are examples of interactions between cold and hot gaseous phases. There are two important regimes in such systems. A sufficiently small cold cloud is destroyed by the hot wind as a result of Kelvin-Helmholtz instabilities, which shatter the cloud into small pieces that eventually mix and dissolve in the hot wind. In contrast, stripped cold gas from a large cloud mixes with the hot wind to intermediate temperatures, and then becomes thermally unstable and cools, causing a net accretion of hot gas to the cold tail. Using the magneto-hydrodynamical code AREPO, we perform cloud crushing simulations and test analytical criteria for the transition between the growth and destruction regimes to clarify a current debate in the literature. We find that the hot-wind cooling time sets the transition radius and not the cooling time of the mixed phase. Magnetic fields modify the wind-cloud interaction. Draping of wind magnetic field enhances the field upstream of the cloud, and fluid instabilities are suppressed by a turbulently magnetized wind beyond what is seen for a wind with a uniform magnetic field. We furthermore predict jellyfish galaxies to have ordered magnetic fields aligned with their tails. We finally discuss how the results of idealized simulations can be used to provide input to subgrid models in cosmological (magneto-)hydrodynamical simulations, which cannot resolve the detailed small-scale structure of cold gas clouds in the circumgalactic medium. KW - methods: numerical KW - ISM: jets and outflows KW - galaxies: formation Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa3177 SN - 0035-8711 SN - 1365-2966 VL - 499 IS - 3 SP - 4261 EP - 4281 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Seiler, Michael A1 - Seiß, Martin A1 - Hoffmann, Holger A1 - Spahn, Frank T1 - Hydrodynamic Simulations of Asymmetric Propeller Structures in Saturn's Rings JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series N2 - The observation of the non-Keplerian behavior of propeller structures in Saturn's outer A ring raises the question: how does the propeller respond to the wandering of the central embedded moonlet? Here, we study numerically how the structural imprint of the propeller changes for a libration of the moonlet. It turns out that the libration induces an asymmetry in the propeller, which depends on the libration period and amplitude of the moonlet. Further, we study the dependence of the asymmetry on the libration period and amplitude for a moonlet with a 400 m Hill radius, which is located in the outer A ring. This allows us to apply our findings to the largest known propeller Blériot, which is expected to be of a similar size. For Blériot, we can conclude that, supposing the moonlet is librating with the largest observed period of 11.1 yr and an azimuthal amplitude of about 1845 km, a small asymmetry should be measurable but depends on the moonlet's libration phase at the observation time. The longitude residuals of other trans-Encke propellers (e.g., Earhart) show amplitudes similar to Blériot, which might allow us to observe larger asymmetries due to their smaller azimuthal extent, allowing us to scan the whole gap structure for asymmetries in one observation. Although the librational model of the moonlet is a simplification, our results are a first step toward the development of a consistent model for the description of the formation of asymmetric propellers caused by a freely moving moonlet. KW - Hydrodynamics KW - methods: data analysis KW - methods: numerical KW - planets and satellites: dynamical evolution and stability KW - planets and satellites: individual (Saturn) KW - planets and satellites: rings Y1 - 2019 U6 - https://doi.org/10.3847/1538-4365/ab26b0 SN - 0067-0049 SN - 1538-4365 VL - 243 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Sparre, Martin A1 - Whittingham, Joseph A1 - Damle, Mitali A1 - Hani, Maan H. A1 - Richter, Philipp A1 - Ellison, Sara L. A1 - Pfrommer, Christoph A1 - Vogelsberger, Mark T1 - Gas flows in galaxy mergers BT - supersonic turbulence in bridges, accretion from the circumgalactic medium, and metallicity dilution JF - Monthly notices of the Royal Astronomical Society N2 - In major galaxy mergers, the orbits of stars are violently perturbed, and gas is torqued to the centre, diluting the gas metallicity and igniting a starburst. In this paper, we study the gas dynamics in and around merging galaxies using a series of cosmological magnetohydrodynamical zoom-in simulations. We find that the gas bridge connecting the merging galaxies pre-coalescence is dominated by turbulent pressure, with turbulent Mach numbers peaking at values of 1.6-3.3. This implies that bridges are dominated by supersonic turbulence, and are thus ideal candidates for studying the impact of extreme environments on star formation. We also find that gas accreted from the circumgalactic medium (CGM) during the merger significantly contributes (27-51 percent) to the star formation rate (SFR) at the time of coalescence and drives the subsequent reignition of star formation in the merger remnant. Indeed, 19-53 percent of the SFR at z = 0 originates from gas belonging to the CGM prior the merger. Finally, we investigate the origin of the metallicity-diluted gas at the centre of merging galaxies. We show that this gas is rapidly accreted on to the Galactic Centre with a time-scale much shorter than that of normal star-forming galaxies. This explains why coalescing galaxies are not well-captured by the fundamental metallicity relation. KW - MHD KW - methods: numerical KW - galaxies: interactions KW - galaxies: starburst Y1 - 2021 U6 - https://doi.org/10.1093/mnras/stab3171 SN - 1365-2966 VL - 509 IS - 2 SP - 2720 EP - 2735 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hani, Maan H. A1 - Sparre, Martin A1 - Ellison, Sara L. A1 - Torrey, Paul A1 - Vogelsberger, Mark T1 - Galaxy mergers moulding the circum-galactic medium BT - I. The impact of a major merger JF - Monthly notices of the Royal Astronomical Society N2 - Galaxies are surrounded by sizeable gas reservoirs which host a significant amount of metals: the circum-galactic medium (CGM). The CGM acts as a mediator between the galaxy and the extragalactic medium. However, our understanding of how galaxy mergers, a major evolutionary transformation, impact the CGM remains deficient. We present a theoretical study of the effect of galaxy mergers on the CGM. We use hydrodynamical cosmological zoom-in simulations of a major merger selected from the Illustris project such that the z = 0 descendant has a halo mass and stellar mass comparable to the Milky Way. To study the CGM we then re-simulated this system at a 40 times better mass resolution, and included detailed post-processing ionization modelling. Our work demonstrates the effect the merger has on the characteristic size of the CGM, its metallicity, and the predicted covering fraction of various commonly observed gas-phase species, such as H I, C IV, and O VI. We show that merger-induced outflows can increase the CGM metallicity by 0.2-0.3 dex within 0.5 Gyr post-merger. These effects last up to 6 Gyr post-merger. While the merger increases the total metal covering fractions by factors of 2-3, the covering fractions of commonly observed UV ions decrease due to the hard ionizing radiation from the active galactic nucleus, which we model explicitly. Our study of the single simulated major merger presented in this work demonstrates the significant impact that a galaxy interaction can have on the size, metallicity, and observed column densities of the CGM. KW - methods: numerical KW - galaxies: evolution KW - galaxies: haloes KW - galaxies: interactions Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx3252 SN - 0035-8711 SN - 1365-2966 VL - 475 IS - 1 SP - 1160 EP - 1176 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Bohdan, Artem A1 - Niemiec, Jacek A1 - Kobzar, Oleh A1 - Pohl, Martin T1 - Electron Pre-acceleration at Nonrelativistic High-Mach-number Perpendicular Shocks JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We perform particle-in-cell simulations of perpendicular nonrelativistic collisionless shocks to study electron heating and pre-acceleration for parameters that permit the extrapolation to the conditions at young supernova remnants. Our high-resolution large-scale numerical experiments sample a representative portion of the shock surface and demonstrate that the efficiency of electron injection is strongly modulated with the phase of the shock reformation. For plasmas with low and moderate temperature (plasma beta beta p =5.10(-4) and 0.5 beta p =), we explore the nonlinear shock structure and electron pre-acceleration for various orientations of the large-scale magnetic field with respect to the simulation plane, while keeping it at 90 degrees to the shock normal. Ion reflection off of the shock leads to the formation of magnetic filaments in the shock ramp, resulting from Weibel-type instabilities, and electrostatic Buneman modes in the shock foot. In all of the cases under study, the latter provides first-stage electron energization through the shock-surfing acceleration mechanism. The subsequent energization strongly depends on the field orientation and proceeds through adiabatic or second-order Fermi acceleration processes for configurations with the out-of-plane and in-plane field components, respectively. For strictly out-of-plane field, the fraction of suprathermal electrons is much higher than for other configurations, because only in this case are the Buneman modes fully captured by the 2D simulation grid. Shocks in plasma with moderate bp provide more efficient pre-acceleration. The relevance of our results to the physics of fully 3D systems is discussed. KW - acceleration of particles KW - instabilities KW - ISM: supernova remnants KW - methods: numerical KW - plasmas KW - shock Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/aa872a SN - 0004-637X SN - 1538-4357 VL - 847 PB - IOP Publ. Ltd. CY - Bristol ER -