TY - JOUR A1 - Wawrzinek, Robert A1 - Ziomkowska, Joanna A1 - Heuveling, Johanna A1 - Mertens, Monique A1 - Herrmann, Andreas A1 - Schneider, Erwin A1 - Wessig, Pablo T1 - DBD Dyes as Fluorescence Lifetime Probes to Study Conformational Changes in Proteins JF - CHEMISTRY-A EUROPEAN JOURNAL N2 - Previously, [1,3]dioxolo[4,5-f][1,3]benzodioxole (DBD)-based fluorophores used as highly sensitive fluorescence lifetime probes reporting on their microenvironmental polarity have been described. Now, a new generation of DBD dyes has been developed. Although they are still sensitive to polarity, in contrast to the former DBD dyes, they have extraordinary spectroscopic properties even in aqueous surroundings. They are characterized by long fluorescence lifetimes (10-20ns), large Stokes shifts (approximate to 100nm), high photostabilities, and high quantum yields (>0.56). Here, the spectroscopic properties and synthesis of functionalized derivatives for labeling biological targets are described. Furthermore, thio-reactive maleimido derivatives of both DBD generations show strong intramolecular fluorescence quenching. This mechanism has been investigated and is found to undergo a photoelectron transfer (PET) process. After reaction with a thiol group, this fluorescence quenching is prevented, indicating successful bonding. Being sensitive to their environmental polarity, these compounds have been used as powerful fluorescence lifetime probes for the investigation of conformational changes in the maltose ATP-binding cassette transporter through fluorescence lifetime spectroscopy. The differing tendencies of the fluorescence lifetime change for both DBD dye generations promote their combination as a powerful toolkit for studying microenvironments in proteins. KW - dyes KW - pigments KW - electron transfer KW - fluorescent probes KW - maleimides KW - MalF KW - photoelectron transfer Y1 - 2013 U6 - https://doi.org/10.1002/chem.201302368 SN - 0947-6539 SN - 1521-3765 VL - 19 IS - 51 SP - 17349 EP - 17357 PB - WILEY-V C H VERLAG GMBH CY - WEINHEIM ER - TY - JOUR A1 - Schwarze, Thomas A1 - Mertens, Monique A1 - Mueller, Peter A1 - Riemer, Janine A1 - Wessig, Pablo A1 - Holdt, Hans-Jürgen T1 - Highly K+-Selective Fluorescent Probes for Lifetime Sensing of K+ in Living Cells JF - Chemistry - a European journal N2 - The new K+-selective fluorescent probes 1 and 2 were obtained by Cu-I-catalyzed 1,3-dipolar azide alkyne cycloaddition (CuAAC) reactions of an alkyne-substituted [1,3]dioxolo[4,5-f][1,3]benzodioxole (DBD) ester fluorophore with azido-functionalized N-phenylaza-18-crown-6 ether and N-(o-isopropoxy) phenylaza-18-crown-6 ether, respectively. Probes 1 and 2 allow the detection of K+ in the presence of Na+ in water by fluorescence enhancement (2.2 for 1 at 2000mm K+ and 2.5 for 2 at 160mm K+). Fluorescence lifetime measurements in the absence and presence of K+ revealed bi-exponential decay kinetics with similar lifetimes, however with different proportions changing the averaged fluorescence decay times ((f(av))). For 1 a decrease of (f(av)) from 12.4 to 9.3ns and for 2 an increase from 17.8 to 21.8ns was observed. Variation of the substituent in ortho position of the aniline unit of the N-phenylaza-18-crown-6 host permits the modulation of the K-d value for a certain K+ concentration. For example, substitution of H in 1 by the isopropoxy group (2) decreased the K-d value from >300mm to 10mm. 2 was chosen for studying the efflux of K+ from human red blood cells (RBC). Upon addition of the Ca2+ ionophor ionomycin to a RBC suspension in a buffer containing Ca2+, the fluorescence of 2 slightly rose within 10min, however, after 120min a significant increase was observed. KW - electron transfer KW - fluorescence lifetime KW - fluorescent probes KW - living cells KW - potassium Y1 - 2017 U6 - https://doi.org/10.1002/chem.201704368 SN - 0947-6539 SN - 1521-3765 VL - 23 SP - 17186 EP - 17190 PB - Wiley-VCH CY - Weinheim ER -