TY - JOUR A1 - Asgarimehr, Milad A1 - Zavorotny, Valery A1 - Wickert, Jens A1 - Reich, Sebastian T1 - Can GNSS Reflectometry Detect Precipitation Over Oceans? JF - Geophysical research letters N2 - For the first time, a rain signature in Global Navigation Satellite System Reflectometry (GNSS-R) observations is demonstrated. Based on the argument that the forward quasi-specular scattering relies upon surface gravity waves with lengths larger than several wavelengths of the reflected signal, a commonly made conclusion is that the scatterometric GNSS-R measurements are not sensitive to the surface small-scale roughness generated by raindrops impinging on the ocean surface. On the contrary, this study presents an evidence that the bistatic radar cross section sigma(0) derived from TechDemoSat-1 data is reduced due to rain at weak winds, lower than approximate to 6 m/s. The decrease is as large as approximate to 0.7 dB at the wind speed of 3 m/s due to a precipitation of 0-2 mm/hr. The simulations based on the recently published scattering theory provide a plausible explanation for this phenomenon which potentially enables the GNSS-R technique to detect precipitation over oceans at low winds. KW - GNSS Reflectometry KW - rain detection KW - rain splash KW - TDS-1 KW - ocean surface KW - electromagnetic scattering Y1 - 2018 U6 - https://doi.org/10.1029/2018GL079708 SN - 0094-8276 SN - 1944-8007 VL - 45 IS - 22 SP - 12585 EP - 12592 PB - American Geophysical Union CY - Washington ER -