TY - JOUR A1 - Kehm, Richard A1 - Jähnert, Markus A1 - Deubel, Stefanie A1 - Flore, Tanina A1 - König, Jeannette A1 - Jung, Tobias A1 - Stadion, Mandy A1 - Jonas, Wenke A1 - Schürmann, Annette A1 - Grune, Tilman A1 - Höhn, Annika T1 - Redox homeostasis and cell cycle activation mediate beta-cell mass expansion in aged, diabetes-prone mice under metabolic stress conditions: role of thioredoxin-interacting protein (TXNIP) JF - Redox Biology N2 - Overnutrition contributes to insulin resistance, obesity and metabolic stress, initiating a loss of functional beta-cells and diabetes development. Whether these damaging effects are amplified in advanced age is barely investigated. Therefore, New Zealand Obese (NZO) mice, a well-established model for the investigation of human obesity-associated type 2 diabetes, were fed a metabolically challenging diet with a high-fat, carbohydrate restricted period followed by a carbohydrate intervention in young as well as advanced age. Interestingly, while young NZO mice developed massive hyperglycemia in response to carbohydrate feeding, leading to beta-cell dysfunction and cell death, aged counterparts compensated the increased insulin demand by persistent beta-cell function and beta-cell mass expansion. Beta-cell loss in young NZO islets was linked to increased expression of thioredoxin-interacting protein (TXNIP), presumably initiating an apoptosis-signaling cascade via caspase-3 activation. In contrast, islets of aged NZOs exhibited a sustained redox balance without changes in TXNIP expression, associated with higher proliferative potential by cell cycle activation. These findings support the relevance of a maintained proliferative potential and redox homeostasis for preserving islet functionality under metabolic stress, with the peculiarity that this adaptive response emerged with advanced age in diabetesprone NZO mice. KW - aging KW - redox homeostasis KW - metabolic stress KW - beta-cells KW - cell cycle KW - thioredoxin-interacting protein Y1 - 2020 U6 - https://doi.org/10.1016/j.redox.2020.101748 SN - 2213-2317 VL - 37 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Lorenz, Robert C. A1 - Gleich, Tobias A1 - Beck, Anne A1 - Poehland, Lydia A1 - Raufelder, Diana A1 - Sommer, Werner A1 - Rapp, Michael A. A1 - Kuehn, Simone A1 - Gallinat, Jürgen T1 - Reward anticipation in the adolescent and aging brain JF - Human brain mapping : a journal devoted to functional neuroanatomy and neuroimaging N2 - Processing of reward is the basis of adaptive behavior of the human being. Neural correlates of reward processing seem to be influenced by developmental changes from adolescence to late adulthood. The aim of this study is to uncover these neural correlates during a slot machine gambling task across the lifespan. Therefore, we used functional magnetic resonance imaging to investigate 102 volunteers in three different age groups: 34 adolescents, 34 younger adults, and 34 older adults. We focused on the core reward areas ventral striatum (VS) and ventromedial prefrontal cortex (VMPFC), the valence processing associated areas, anterior cingulate cortex (ACC) and insula, as well as information integration associated areas, dorsolateral prefrontal cortex (DLPFC), and inferior parietal lobule (IPL). Results showed that VS and VMPFC were characterized by a hyperactivation in adolescents compared with younger adults. Furthermore, the ACC and insula were characterized by a U-shape pattern (hypoactivation in younger adults compared with adolescents and older adults), whereas the DLPFC and IPL were characterized by a J-shaped form (hyperactivation in older adults compared with younger groups). Furthermore, a functional connectivity analysis revealed an elevated negative functional coupling between the inhibition-related area rIFG and VS in younger adults compared with adolescents. Results indicate that lifespan-related changes during reward anticipation are characterized by different trajectories in different reward network modules and support the hypothesis of an imbalance in maturation of striatal and prefrontal cortex in adolescents. Furthermore, these results suggest compensatory age-specific effects in fronto-parietal regions. Hum Brain Mapp 35:5153-5165, 2014. (c) 2014 Wiley Periodicals, Inc. KW - reward anticipation KW - lifespan KW - aging KW - adolescence KW - fMRI KW - connectivity Y1 - 2014 U6 - https://doi.org/10.1002/hbm.22540 SN - 1065-9471 SN - 1097-0193 VL - 35 IS - 10 SP - 5153 EP - 5165 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Reifegerste, Jana T1 - The effects of aging on bilingual language BT - what changes, what doesn't, and why JF - Bilingualism : language and cognition N2 - Substantial research has examined cognition in aging bilinguals. However, less work has investigated the effects of aging on language itself in bilingualism. In this article I comprehensively review prior research on this topic, and interpret the evidence in light of current theories of aging and theories of bilingualism. First, aging indeed appears to affect bilinguals' language performance, though there is considerable variability in the trajectory across adulthood (declines, age-invariance, and improvements) and in the extent to which these trajectories resemble those found in monolinguals. I argue that these age effects are likely explained by the key opposing forces of increasing experience and cognitive declines in aging. Second, consistent with some theoretical work on bilingual language processing, the grammatical processing mechanisms do not seem to change between younger and older bilingual adults, even after decades of immersion. I conclude by discussing how future research can further advance the field. KW - aging KW - bilingualism KW - second language KW - lexical processing KW - grammatical KW - processing Y1 - 2021 U6 - https://doi.org/10.1017/S1366728920000413 SN - 1366-7289 SN - 1469-1841 VL - 24 IS - 1 SP - 1 EP - 17 PB - Cambridge Univ. Press CY - Cambridge ER - TY - THES A1 - Kehm, Richard T1 - The impact of metabolic stress and aging on functionality and integrity of pancreatic islets and beta-cells T1 - Der Einfluss von metabolischem Stress und Alterung auf die Funktionalität und Integrität von Langerhans-Inseln und β-Zellen N2 - The increasing age of worldwide population is a major contributor for the rising prevalence of major pathologies and disease, such as type 2 diabetes, mediated by massive insulin resistance and a decline in functional beta-cell mass, highly associated with an elevated incidence of obesity. Thus, the impact of aging under physiological conditions and in combination with diet-induced metabolic stress on characteristics of pancreatic islets and beta-cells, with the focus on functionality and structural integrity, were investigated in the present dissertation. Primarily induced by malnutrition due to chronic and excess intake of high caloric diets, containing large amounts of carbohydrates and fats, obesity followed by systemic inflammation and peripheral insulin resistance occurs over time, initiating metabolic stress conditions. Elevated insulin demands initiate an adaptive response by beta-cell mass expansion due to increased proliferation, but prolonged stress conditions drive beta-cell failure and loss. Aging has been also shown to affect beta-cell functionality and morphology, in particular by proliferative limitations. However, most studies in rodents were performed under beta-cell challenging conditions, such as high-fat diet interventions. Thus, in the first part of the thesis (publication I), a characterization of age-related alterations on pancreatic islets and beta-cells was performed by using plasma samples and pancreatic tissue sections of standard diet-fed C57BL/6J wild-type mice in several age groups (2.5, 5, 10, 15 and 21 months). Aging was accompanied by decreased but sustained islet proliferative potential as well as an induction of cellular senescence. This was associated with a progressive islet expansion to maintain normoglycemia throughout lifespan. Moreover, beta-cell function and mass were not impaired although the formation and accumulation of AGEs occurred, located predominantly in the islet vasculature, accompanied by an induction of oxidative and nitrosative (redox) stress. The nutritional behavior throughout human lifespan; however, is not restricted to a balanced diet. This emphasizes the significance to investigate malnutrition by the intake of high-energy diets, inducing metabolic stress conditions that synergistically with aging might amplify the detrimental effects on endocrine pancreas. Using diabetes-prone NZO mice aged 7 weeks, fed a dietary regimen of carbohydrate restriction for different periods (young mice - 11 weeks, middle-aged mice - 32 weeks) followed by a carbohydrate intervention for 3 weeks, offered the opportunity to distinguish the effects of diet-induced metabolic stress in different ages on the functionality and integrity of pancreatic islets and their beta-cells (publication II, manuscript). Interestingly, while young NZO mice exhibited massive hyperglycemia in response to diet-induced metabolic stress accompanied by beta-cell dysfunction and apoptosis, middle-aged animals revealed only moderate hyperglycemia by the maintenance of functional beta-cells. The loss of functional beta-cell mass in islets of young mice was associated with reduced expression of PDX1 transcription factor, increased endocrine AGE formation and related redox stress as well as TXNIP-dependent induction of the mitochondrial death pathway. Although the amounts of secreted insulin and the proliferative potential were comparable in both age groups, islets of middle-aged mice exhibited sustained PDX1 expression, almost regular insulin secretory function, increased capacity for cell cycle progression as well as maintained redox potential. The results of the present thesis indicate a loss of functional beta-cell mass in young diabetes-prone NZO mice, occurring by redox imbalance and induction of apoptotic signaling pathways. In contrast, aging under physiological conditions in C57BL/6J mice and in combination with diet-induced metabolic stress in NZO mice does not appear to have adverse effects on the functionality and structural integrity of pancreatic islets and beta-cells, associated with adaptive responses on changing metabolic demands. However, considering the detrimental effects of aging, it has to be assumed that the compensatory potential of mice might be exhausted at a later point of time, finally leading to a loss of functional beta-cell mass and the onset and progression of type 2 diabetes. The polygenic, diabetes-prone NZO mouse is a suitable model for the investigation of human obesity-associated type 2 diabetes. However, mice at advanced age attenuated the diabetic phenotype or do not respond to the dietary stimuli. This might be explained by the middle age of mice, corresponding to the human age of about 38-40 years, in which the compensatory mechanisms of pancreatic islets and beta cells towards metabolic stress conditions are presumably more active. N2 - Das steigende Alter der Weltbevölkerung ist ein wesentlicher Faktor für die zunehmende Prävalenz bedeutsamer Pathologien und Krankheiten, wie dem Typ-2-Diabetes, der durch eine massive Insulinresistenz und eine Abnahme der funktionellen Beta-Zellmasse hervorgerufen wird und in hohem Maße mit einem verstärkten Auftreten von Fettleibigkeit assoziiert ist. Daher wurde in der vorliegenden Dissertation der Einfluss der Alterung unter physiologischen Bedingungen und in Kombination mit ernährungs-bedingtem, metabolischem Stress auf die Eigenschaften von Langerhans-Inseln und Beta-Zellen, mit dem Schwerpunkt auf Funktionalität und strukturelle Integrität, untersucht. Primär induziert durch Fehlernährung infolge des chronischen und übermäßigen Konsums von kalorienreichen Diäten, die große Mengen an Kohlenhydraten und Fetten enthalten, kann Adipositas, gefolgt von systemischen Entzündungen und peripherer Insulinresistenz, im Laufe des Lebens entstehen und metabolische Stresszustände auslösen. Daraus resultiert ein erhöhter Insulinbedarf, der eine adaptive Reaktion durch die Vergrößerung der Beta-Zellmasse infolge gesteigerter Proliferation auslöst. Längere Stressbedingungen führen hingegen zu Schäden an und Verlust von Beta-Zellen. Es wurde zudem gezeigt, dass das Altern die Funktionalität und Morphologie von Beta-Zellen, insbesondere durch proliferative Limitationen, beeinflusst. Die meisten Studien in Nagetieren wurden jedoch unter erhöhten Stressbedingungen für Beta-Zellen, beispielsweise durch die Fütterung von Hochfett-Diäten, durchgeführt. Deshalb wurde im ersten Teil der Arbeit (Publikation I) eine Charakterisierung von altersbedingten Veränderungen auf die Langerhans-Inseln und Beta-Zellen unter Verwendung von Plasmaproben und Pankreasgewebeschnitten von C57BL/6J-Wildtyp-Mäusen verschiedener Altersgruppen (2,5; 5; 10; 15 und 21 Monate), die mit einer Standarddiät gefüttert wurden, durchgeführt. Das Altern ging mit einem reduzierten, jedoch anhaltenden Proliferationspotential der Langerhans-Inseln sowie einer Induktion der zellulären Seneszenz einher. Dies war mit einem fortschreitenden Wachstum der Langerhans-Inseln verbunden, um eine Normoglykämie während der gesamten Lebensdauer aufrechtzuerhalten. Zudem wurden die Beta-Zell-Masse und die Funktionalität nicht beeinträchtigt, obwohl eine Bildung und Akkumulation von AGEs, die vorwiegend im Gefäßsystem der Langerhans-Inseln lokalisiert und von einer Induktion von oxidativem und nitrosativem (redox) Stress begleitet war, auftrat. Das Ernährungsverhalten während der gesamten Lebensspanne ist jedoch nicht auf eine ausgewogene Ernährung beschränkt. Dies unterstreicht die Bedeutung der Untersuchung von Fehlernährung durch die Einnahme energiereicher Diäten, wodurch metabolische Stresszustände induziert werden, die synergistisch mit dem Altern schädigende Effekte auf das endokrine Pankreas verstärken können. Verwendet wurden 7 Wochen alte, zur Entwicklung von Typ-2-Diabetes neigende NZO-Mäuse, die unterschiedlich langen kohlenhydratrestriktiven Fütterungsperioden (junge Mäuse - 11 Wochen, Mäuse mittleren Alters - 32 Wochen), gefolgt von einer 3-wöchigen Kohlenhydratintervention ausgesetzt waren. Dadurch konnten die Auswirkungen von ernährungsbedingtem metabolischem Stress auf die Funktionalität und Integrität von Langerhans-Inseln und deren Beta-Zellen in verschiedenen Altersstufen untersucht werden (Publikation II, Manuskript). Interessanterweise zeigten junge NZO-Mäuse eine massive Hyperglykämie als Reaktion auf den ernährungsbedingten, metabolischen Stress was von Beta-Zelldysfunktion und Apoptose begleitet war. Tiere mittleren Alters zeigten hingegen nur eine moderate Hyperglykämie durch den Erhalt funktioneller Beta-Zellen. Der Verlust funktioneller Beta-Zellmasse in jungen Mäusen war mit einer verminderten Expression des PDX1-Transkriptionsfaktors, einer erhöhten endokrinen AGE-Bildung und damit verbundenem Redox Stress sowie einer TXNIP-abhängigen Induktion des mitochondrialen Apoptosewegs verbunden. Obwohl die Mengen an sekretiertem Insulin sowie das Proliferationspotential in beiden Altersgruppen vergleichbar waren, zeigten die Langerhans-Inseln der Mäuse im mittleren Alter eine anhaltende PDX1-Expression, eine nahezu reguläre Insulinsekretionsfunktion, eine erhöhte Kapazität für das Fortschreiten des Zellzyklus sowie einen Erhalt des Redoxpotentials. Die Ergebnisse der vorliegenden Arbeit zeigen einen Verlust funktioneller Beta-Zellmasse bei jungen, diabetogenen NZO-Mäusen, der durch ein Redox-Ungleichgewicht und die Induktion apoptotischer Signalwege verursacht wurde. Im Gegensatz dazu scheint das Altern unter physiologischen Bedingungen bei C57BL/6J-Mäusen und in Kombination mit ernährungsbedingtem metabolischem Stress bei NZO-Mäusen keine nachteiligen Auswirkungen auf die Funktionalität und strukturelle Integrität von Langerhans und Beta-Zellen zu haben, was mit adaptiven Reaktionen auf wechselnde Stoffwechsel-anforderungen assoziiert war. In Anbetracht der negativen Auswirkungen der Alterung muss jedoch berücksichtigt werden, dass das Kompensationsverhalten von Mäusen zu einem späteren Zeitpunkt erschöpft sein könnte, was schließlich zu einem Verlust der funktionellen Beta-Zellmasse und dem Auftreten und Fortschreiten von Typ-2-Diabetes führt. Die polygene, zu Typ-2-Diabetes neigende NZO-Maus ist ein geeignetes Modell für die Untersuchung von mit Adipositas-assoziiertem Typ-2-Diabetes beim Menschen. Mäuse im fortgeschrittenen Alter zeigten jedoch einen verminderten diabetischen Phänotyp oder reagierten nicht auf die diätetischen Reize. Dies könnte durch das mittlere Alter der Mäuse erklärt werden, das dem menschlichen Alter von etwa 38 bis 40 Jahren entspricht, in dem die Kompensationsmechanismen von Langerhans-Inseln und Beta-Zellen gegenüber metabolischen Stressbedingungen möglicherweise aktiver sind. KW - Alterung KW - aging KW - Beta-Zelle KW - beta-cell KW - metabolischer Stress KW - metabolic stress Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441099 ER - TY - THES A1 - Baeseler, Jessica T1 - Trace element effects on longevity and neurodegeneration with focus on C. elegans T1 - Effekte von Spurenelementen auf die Lebensdauer und Neurodegeneration mit Fokus auf C. elegans N2 - The trace elements zinc and manganese are essential for human health, especially due to their enzymatic and protein stabilizing functions. If these elements are ingested in amounts exceeding the requirements, regulatory processes for maintaining their physiological concentrations (homeostasis) can be disturbed. Those homeostatic dysregulations can cause severe health effects including the emergence of neurodegenerative disorders such as Parkinson’s disease (PD). The concentrations of essential trace elements also change during the aging process. However, the relations of cause and consequence between increased manganese and zinc uptake and its influence on the aging process and the emergence of the aging-associated PD are still rarely understood. This doctoral thesis therefore aimed to investigate the influence of a nutritive zinc and/or manganese oversupply on the metal homeostasis during the aging process. For that, the model organism Caenorhabditis elegans (C. elegans) was applied. This nematode suits well as an aging and PD model due to properties such as its short life cycle and its completely sequenced, genetically amenable genome. Different protocols for the propagation of zinc- and/or manganese-supplemented young, middle-aged and aged C. elegans were established. Therefore, wildtypes, as well as genetically modified worm strains modeling inheritable forms of parkinsonism were applied. To identify homeostatic and neurological alterations, the nematodes were investigated with different methods including the analysis of total metal contents via inductively-coupled plasma tandem mass spectrometry, a specific probe-based method for quantifying labile zinc, survival assays, gene expression analysis as well as fluorescence microscopy for the identification and quantification of dopaminergic neurodegeneration.. During aging, the levels of iron, as well as zinc and manganese increased.. Furthermore, the simultaneous oversupply with zinc and manganese increased the total zinc and manganese contents to a higher extend than the single metal supplementation. In this relation the C. elegans metallothionein 1 (MTL-1) was identified as an important regulator of metal homeostasis. The total zinc content and the concentration of labile zinc were age-dependently, but differently regulated. This elucidates the importance of distinguishing these parameters as two independent biomarkers for the zinc status. Not the metal oversupply, but aging increased the levels of dopaminergic neurodegeneration. Additionally, nearly all these results yielded differences in the aging-dependent regulation of trace element homeostasis between wildtypes and PD models. This confirms that an increased zinc and manganese intake can influence the aging process as well as parkinsonism by altering homeostasis although the underlying mechanisms need to be clarified in further studies. N2 - Die Spurenelemente Zink und Mangan sind vor allem aufgrund ihrer enzymatischen und Protein-stabilisierenden Funktionen essentiell für die menschliche Gesundheit. Werden sie allerdings in Mengen aufgenommen, die den Bedarf übersteigen, können regulatorische Prozesse für die Aufrechterhaltung physiologischer Konzentrationen dieser Metalle (Homöostase) aus dem Gleichgewicht geraten. Das kann ernsthafte gesundheitliche Konsequenzen nach sich ziehen, unter anderem die Entstehung neurodegenerativer Krankheiten, wie zum Beispiel der Parkinson’schen Erkrankung. Auch während des Alterungsprozesses verändern sich die Gehalte an lebensnotwendigen Spurenelementen im Körper. Jedoch sind die Zusammenhänge zwischen Ursache und Wirkung einer erhöhten Aufnahme an Zink und Mangan und deren Einfluss auf den Alterungsprozess und die Entstehung der altersassoziierten Parkinson’schen Erkrankung bisher nur unzureichend verstanden. Im Rahmen dieser Doktorarbeit wurde deshalb der Einfluss einer nutritiven Zink- und/oder Manganüberversorgung auf die Metallhomöostase während der Alterung untersucht. Dazu wurde Caenorhabditis elegans (C. elegans) als Modellorganismus verwendet. Diese Fadenwürmer eignen sich aufgrund verschiedener Eigenschaften, wie einem kurzen Lebenszyklus und einem komplett sequenzierten und leicht manipulierbarem Genom, hervorragend als Alters- und Parkinson-Modelle. Es wurden verschiedene Protokolle etabliert, die die Anzucht von Zink- und/oder Mangan-supplementierten jungen, mittelalten bzw. gealterten C. elegans erlaubten. Neben Wildtypen wurden auch Wurmstämme untersucht, die genetische Modifikationen aufweisen, die mit vererbbaren Formen des Parkinsonismus assoziiert werden können. Die Würmer wurden mithilfe verschiedener Methoden, wie der analytischen Bestimmung des Gesamtmetallgehaltes mittels Massenspektrometrie mit induktiv-gekoppeltem Plasma, einer Sonden-spezifischen Methode zur Bestimmung von freiem Zink, Letalitätsassays, Genexpressionsanalysen und der Fluoreszenz-mikroskopischen Untersuchung der dopaminergen Neurodegeneration auf verschiedene Parameter untersucht, die Aufschluss über homöostatische und neurologische Veränderungen geben. Es wurde eine altersbedingte Zunahme von Eisen, sowie Zink und Mangan in den Würmern beobachtet. Weiterhin stellte sich heraus, dass vor allem die simultane Überversorgung mit Zink und Mangan den Gesamtmetallgehalt dieser Metalle in C. elegans in einem Maß steigerte, das das der Einzelmetallsupplementierung überstieg. Dabei konnte vor allem das C. elegans Metallothionein 1 (MTL-1) als wichtiger Faktor in der Regulation der Metallhomöostase identifiziert werden. Außerdem wurde die Wichtigkeit verdeutlicht, zwischen dem Gesamtzinkgehalt und der Konzentration an freiem Zink als Biomarkern für den Zinkstatus eines Organismus zu unterscheiden. Beide Parameter wurden altersabhängig unterschiedlich reguliert. Im Gegensatz zur Alterung, wurde durch die Überversorgung mit Metallen keine zusätzliche Schädigung der dopaminergen Neuronen beobachtet. In nahezu all diesen Ergebnissen verdeutlichten sich weiterhin Unterschiede in der altersabhängigen Regulation der Spurenelementhomöostase zwischen Wildtypen und Parkinson-Modellen. Dies bestätigt die Annahme, dass sich eine erhöhte Aufnahme von Mangan und Zink durch die Beeinflussung der Homöostase sowohl auf die Alterung, als auch den Parkinsonismus auswirken kann, jedoch müssen die mechanistischen Grundlagen dessen in zukünftigen Studien aufgeklärt werden. KW - Caenorhabditis elegans KW - aging KW - trace element KW - zinc KW - manganese KW - Caenorhabditis elegans KW - Alterung KW - Spurenelement KW - Zink KW - Mangan Y1 - 2021 ER - TY - GEN A1 - Heinzel, Stephan A1 - Rimpel, Jérôme A1 - Stelzel, Christine A1 - Rapp, Michael A. T1 - Transfer Effects to a Multimodal Dual-Task after Working Memory Training and Associated Neural Correlates in Older Adults BT - A Pilot Study N2 - Working memory (WM) performance declines with age. However, several studies have shown that WM training may lead to performance increases not only in the trained task, but also in untrained cognitive transfer tasks. It has been suggested that transfer effects occur if training task and transfer task share specific processing components that are supposedly processed in the same brain areas. In the current study, we investigated whether single-task WM training and training-related alterations in neural activity might support performance in a dual-task setting, thus assessing transfer effects to higher-order control processes in the context of dual-task coordination. A sample of older adults (age 60–72) was assigned to either a training or control group. The training group participated in 12 sessions of an adaptive n-back training. At pre and post-measurement, a multimodal dual-task was performed in all participants to assess transfer effects. This task consisted of two simultaneous delayed match to sample WM tasks using two different stimulus modalities (visual and auditory) that were performed either in isolation (single-task) or in conjunction (dual-task). A subgroup also participated in functional magnetic resonance imaging (fMRI) during the performance of the n-back task before and after training. While no transfer to single-task performance was found, dual-task costs in both the visual modality (p < 0.05) and the auditory modality (p < 0.05) decreased at post-measurement in the training but not in the control group. In the fMRI subgroup of the training participants, neural activity changes in left dorsolateral prefrontal cortex (DLPFC) during one-back predicted post-training auditory dual-task costs, while neural activity changes in right DLPFC during three-back predicted visual dual-task costs. Results might indicate an improvement in central executive processing that could facilitate both WM and dual-task coordination. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 343 KW - aging KW - cognitive training KW - dual-task KW - fMRI KW - modality KW - neuroimaging KW - transfer KW - working memory Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401921 ER - TY - JOUR A1 - Heinzel, Stephan A1 - Rimpel, Jérôme A1 - Stelzel, Christine A1 - Rapp, Michael A. T1 - Transfer Effects to a Multimodal Dual-Task after Working Memory Training and Associated Neural Correlates in Older Adults BT - A Pilot Study JF - Frontiers in human neuroscience N2 - Working memory (WM) performance declines with age. However, several studies have shown that WM training may lead to performance increases not only in the trained task, but also in untrained cognitive transfer tasks. It has been suggested that transfer effects occur if training task and transfer task share specific processing components that are supposedly processed in the same brain areas. In the current study, we investigated whether single-task WM training and training-related alterations in neural activity might support performance in a dual-task setting, thus assessing transfer effects to higher-order control processes in the context of dual-task coordination. A sample of older adults (age 60–72) was assigned to either a training or control group. The training group participated in 12 sessions of an adaptive n-back training. At pre and post-measurement, a multimodal dual-task was performed in all participants to assess transfer effects. This task consisted of two simultaneous delayed match to sample WM tasks using two different stimulus modalities (visual and auditory) that were performed either in isolation (single-task) or in conjunction (dual-task). A subgroup also participated in functional magnetic resonance imaging (fMRI) during the performance of the n-back task before and after training. While no transfer to single-task performance was found, dual-task costs in both the visual modality (p < 0.05) and the auditory modality (p < 0.05) decreased at post-measurement in the training but not in the control group. In the fMRI subgroup of the training participants, neural activity changes in left dorsolateral prefrontal cortex (DLPFC) during one-back predicted post-training auditory dual-task costs, while neural activity changes in right DLPFC during three-back predicted visual dual-task costs. Results might indicate an improvement in central executive processing that could facilitate both WM and dual-task coordination. KW - working memory KW - cognitive training KW - modality KW - dual-task KW - aging KW - transfer KW - fMRI KW - neuroimaging Y1 - 2017 U6 - https://doi.org/10.3389/fnhum.2017.00085 VL - 11 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Heinzel, Stephan A1 - Lorenz, Robert C. A1 - Brockhaus, Wolf-Ruediger A1 - Wuestenberg, Torsten A1 - Kathmann, Norbert A1 - Heinz, Andreas A1 - Rapp, Michael A. T1 - Working memory load-dependent brain response predicts behavioral training gains in older adults JF - The journal of neuroscience N2 - In the domain of working memory (WM), a sigmoid-shaped relationship between WM load and brain activation patterns has been demonstrated in younger adults. It has been suggested that age-related alterations of this pattern are associated with changes in neural efficiency and capacity. At the same time, WM training studies have shown that some older adults are able to increase their WM performance through training. In this study, functional magnetic resonance imaging during an n-back WM task at different WM load levels was applied to compare blood oxygen level-dependent (BOLD) responses between younger and older participants and to predict gains in WM performance after a subsequent 12-session WM training procedure in older adults. We show that increased neural efficiency and capacity, as reflected by more "youth-like" brain response patterns in regions of interest of the frontoparietal WM network, were associated with better behavioral training outcome beyond the effects of age, sex, education, gray matter volume, and baseline WM performance. Furthermore, at low difficulty levels, decreases in BOLD response were found after WM training. Results indicate that both neural efficiency (i. e., decreased activation at comparable performance levels) and capacity (i. e., increasing activation with increasing WM load) of a WM-related network predict plasticity of the WM system, whereas WM training may specifically increase neural efficiency in older adults. KW - aging KW - fMRI KW - neuroimaging KW - plasticity KW - training KW - working memory Y1 - 2014 U6 - https://doi.org/10.1523/JNEUROSCI.2463-13.2014 SN - 0270-6474 VL - 34 IS - 4 SP - 1224 EP - 1233 PB - Society for Neuroscience CY - Washington ER -