TY - JOUR A1 - Pereira, Fernanda S. A1 - Nascimento, Heliara D. L. A1 - Magalhaes, Alvicler A1 - Peter, Martin G. A1 - Bataglion, Giovana Anceski A1 - Eberlin, Marcos N. A1 - Gonzalez, Eduardo R. P. T1 - ESI(+)-MS and GC-MS study of the hydrolysis of N-azobenzyl derivatives of chitosan JF - Molecules N2 - New N-p-chloro-, N-p-bromo-, and N-p-nitrophenylazobenzylchitosan derivatives, as well as the corresponding azophenyl and azophenyl-p-sulfonic acids, were synthesized by coupling N-benzylvchitosan with aryl diazonium salts. The synthesized molecules were analyzed by UV-Vis, FT-IR, H-1-NMR and N-15-NMR spectroscopy. The capacity of copper chelation by these materials was studied by AAS. Chitosan and the derivatives were subjected to hydrolysis and the products were analyzed by ESI(+)-MS and GC-MS, confirming the formation of N-benzyl chitosan. Furthermore, the MS results indicate that a nucleophilic aromatic substitution (SnAr) reaction occurs under hydrolysis conditions, yielding chloroaniline from N-p-bromo-, and N-p-nitrophenylazo-benzylchitosan as well as bromoaniline from N-p-chloro-, and N-p-nitrophenylazobenzyl-chitosan. KW - chitosan KW - N-azobenzylchitosan KW - ESI-MS KW - GC-MS KW - SnAr reaction Y1 - 2014 U6 - https://doi.org/10.3390/molecules191117604 SN - 1420-3049 VL - 19 IS - 11 SP - 17604 EP - 17618 PB - MDPI CY - Basel ER - TY - JOUR A1 - Strehlau, Jenny A1 - Weber, Till A1 - Luerenbaum, Constantin A1 - Bornhorst, Julia A1 - Galla, Hans-Joachim A1 - Schwerdtle, Tanja A1 - Winter, Martin A1 - Nowak, Sascha T1 - Towards quantification of toxicity of lithium ion battery electrolytes - development and validation of a liquid-liquid extraction GC-MS method for the determination of organic carbonates in cell culture materials JF - Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica N2 - A novel method based on liquid-liquid extraction with subsequent gas chromatography separation and mass spectrometric detection (GC-MS) for the quantification of organic carbonates in cell culture materials is presented. Method parameters including the choice of extraction solvent, of extraction method and of extraction time were optimised and the method was validated. The setup allowed for determination within a linear range of more than two orders of magnitude. The limits of detection (LODs) were between 0.0002 and 0.002 mmol/L and the repeatability precisions were in the range of 1.5-12.9%. It could be shown that no matrix effects were present and recovery rates between 98 and 104% were achieved. The methodology was applied to cell culture models incubated with commercial lithium ion battery (LIB) electrolytes to gain more insight into the potential toxic effects of these compounds. The stability of the organic carbonates in cell culture medium after incubation was studied. In a porcine model of the blood-cerebrospinal fluid (CSF) barrier, it could be shown that a transfer of organic carbonates into the brain facing compartment took place. KW - Liquid-liquid extraction KW - GC-MS KW - Lithiumion battery (LIB) KW - Organic carbonates KW - Cell culture materials Y1 - 2017 U6 - https://doi.org/10.1007/s00216-017-0549-6 SN - 1618-2642 SN - 1618-2650 VL - 409 SP - 6123 EP - 6131 PB - Springer CY - Heidelberg ER -