TY - JOUR A1 - Weber, Marion A1 - Cardona, A. A1 - Valencia, V. A1 - Altenberger, Uwe A1 - Lopez-Martinez, M. A1 - Tobon, M. A1 - Zapata, Sebastian Henao A1 - Zapata, G. A1 - Concha, A. E. T1 - Geochemistry and geochronology of the Guajira Eclogites, northern Colombia evidence of a metamorphosed primitive Cretaceous Caribbean Island-arc JF - Geologica acta N2 - The chemical composition of eclogites, found as boulders in a Tertiary conglomerate from the Guajira Peninsula, Colombia suggests that these rocks are mainly metamorphosed basaltic andesites. They are depleted in LILE elements compared to MORB, have a negative Nb-anomaly and flat to enriched REE patterns, suggesting that their protoliths evolved in a subduction related tectonic setting. They show island-arc affinities and are similar to primitive island-arc rocks described in the Caribbean. The geochemical characteristics are comparable to low-grade greenschists from the nearby Etpana Terrane, which are interpreted as part of a Cretaceous intra-oceanic arc. These data support evidence that the eclogites and the Etpana terrane rocks formed from the same volcano-sedimentary sequence. Part of this sequence was accreted onto the margin and another was incorporated into the subduction channel and metamorphosed at eclogite facies conditions. Ar-40-Ar-39 ages of 79.2 +/- 1.1Ma and 82.2 +/- 2.5Ma determined on white micas, separated from two eclogite samples, are interpreted to be related to the cooling of the main metamorphic event. The formation of a common volcano-sedimentary protolith and subsequent metamorphism of these units record the ongoing Late Cretaceous continental subduction of the South American margin within the Caribbean intra-oceanic arc subduction zone. This gave way to an arc-continent collision between the Caribbean and the South American plates, where this sequence was exhumed after the Campanian. KW - Eclogites KW - Primitive island-arc KW - Geochronology KW - Guajira Peninsula KW - Colombia KW - Caribbean Y1 - 2011 U6 - https://doi.org/10.1344/105.000001740 SN - 1695-6133 VL - 9 IS - 3-4 SP - 425 EP - 443 PB - Facultat de Geologia, Divisio III, Ciències Experimentals i Matemàtiques, Universitat de Barcelona CY - Barcelona ER - TY - JOUR A1 - Bsdok, Barbara A1 - Altenberger, Uwe A1 - Concha-Perdomo, Ana Elena A1 - Wilke, Franziska Daniela Helena A1 - Gil-Rodriguez, J. G. T1 - The Santa Rosa de Viterbo meteorite, Colombia BT - New work on it's petrological, geochemical and economical characterization JF - Journal of South American earth sciences N2 - Undifferentiated meteorites, like primitive chondrites, can contain presolar and solar nebula materials which would provide information about the origin and initial conditions of the solar system, whereas differentiated meteorites like iron meteorites, can show early phases of planetary accretion. They also provide the possibility to receive information about core properties and planetary bodies. In addition to the gain in such fundamental scientific knowledge both types are of interest for the exploration of critical raw materials (CRMs) and precious elements. The Santa Rosa de Viterbo meteorite shower, discovered 1810 in the Boyaca province of Colombia, represents a typical iron-nickel meteorite. The present study presents new structural, textural and geochemical results of one fragment of this meteorite, using reflecting microscopy, electron probe micro analyses (EPMA) and electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). The present study presents trace element concentrations of the meteorite's minerals for the first time. The sample is dominated by kamacite (alpha-FeNi). Schreibersite (FeNi3P), taenite (gamma-FeNi) and plessite (mixture of kamacite and taenite) are minor constituents. The occurrence of cohenite ((Fe,Ni,Co)(3)C) and troilite (FeS) are likely. The meteorite sample contains classical Neuman bands passing through kamacite and frequent Widmanstadtten pattern. The bandwidth of kamacite defines the meteorite as finest octahedrite. Geochemically, it is characterized as a "Type IC meteorite". While improving the characterization and classification of the Santa Rosa de Viterbo Iron Meteorite, notable concentrations of Au (>400 ppm) and Ge (>230 ppm) alongside major elements such as Fe, Ni and Co in the bulk composition of that meteorite, were proven. Major and rock-forming minerals such as kamacite and taenite incorporate hundreds of ppm of Ge whereas schreibersite, itself a minor component in that particular meteorite, is the major source for Au (>1400 ppm). In kamacite and taenite also Ir, Pd and Ga were found in minor amounts. Nano-scale inclusions or atomic clusters called nano-nuggets may have been responsible for the high concentrations of Au, Ir, Pd and Ga. Raman and Laser-induced plasma spectroscopes installed in in space probes seems suitable exploration methods for Fe-Ni meteorites, containing Ni-concentrations > 5.8 wt% defining the meteorite as octaedrites. KW - Fe-Ni-Meteorite KW - Geochemistry KW - Colombia KW - Gold KW - Rare elements KW - Space mining Y1 - 2020 U6 - https://doi.org/10.1016/j.jsames.2020.102779 SN - 0895-9811 VL - 104 PB - Elsevier Science CY - Amsterdam ER -