TY - JOUR A1 - Zurell, Damaris A1 - Grimm, Volker A1 - Rossmanith, Eva A1 - Zbinden, Niklaus A1 - Zimmermann, Niklaus E. A1 - Schröder-Esselbach, Boris T1 - Uncertainty in predictions of range dynamics black grouse climbing the Swiss Alps JF - Ecography : pattern and diversity in ecology ; research papers forum N2 - Empirical species distribution models (SDMs) constitute often the tool of choice for the assessment of rapid climate change effects on species vulnerability. Conclusions regarding extinction risks might be misleading, however, because SDMs do not explicitly incorporate dispersal or other demographic processes. Here, we supplement SDMs with a dynamic population model 1) to predict climate-induced range dynamics for black grouse in Switzerland, 2) to compare direct and indirect measures of extinction risks, and 3) to quantify uncertainty in predictions as well as the sources of that uncertainty. To this end, we linked models of habitat suitability to a spatially explicit, individual-based model. In an extensive sensitivity analysis, we quantified uncertainty in various model outputs introduced by different SDM algorithms, by different climate scenarios and by demographic model parameters. Potentially suitable habitats were predicted to shift uphill and eastwards. By the end of the 21st century, abrupt habitat losses were predicted in the western Prealps for some climate scenarios. In contrast, population size and occupied area were primarily controlled by currently negative population growth and gradually declined from the beginning of the century across all climate scenarios and SDM algorithms. However, predictions of population dynamic features were highly variable across simulations. Results indicate that inferring extinction probabilities simply from the quantity of suitable habitat may underestimate extinction risks because this may ignore important interactions between life history traits and available habitat. Also, in dynamic range predictions uncertainty in SDM algorithms and climate scenarios can become secondary to uncertainty in dynamic model components. Our study emphasises the need for principal evaluation tools like sensitivity analysis in order to assess uncertainty and robustness in dynamic range predictions. A more direct benefit of such robustness analysis is an improved mechanistic understanding of dynamic species responses to climate change. Y1 - 2012 U6 - https://doi.org/10.1111/j.1600-0587.2011.07200.x SN - 0906-7590 VL - 35 IS - 7 SP - 590 EP - 603 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Zobir, Soraya Hadj A1 - Mocek, Beate T1 - Determination of the source rocks for the diatexites from the Edough Massif, Annaba, NE Algeria JF - Journal of African earth sciences N2 - The crystalline Edough Massif is located in the oriental part of the Algerian coastline. It consists of two tectonically superposed units of gneisses, augen-gneisses and migmatitic gneisses in the lower unit and micaschists in the upper unit. The crystalline rocks underwent a low to moderate degree of metamorphism; the gneisses suffered partial melting. They display migmatitic features such as nebulitic structures with contorted leucosome layers and K-feldspar porphyroblasts and thus can be classified as diatexites. The mineralogical composition of these rocks is very homogenous and consists of K-feldspar, micas and quartz. The feldspar-rich, arkosic nature of the outcrop implies a granitic source rock. High K2O/Na2O ratios and high A/CNK > 1.1 indicate an S-type granite source and a peraluminous composition of the protolith respectively. Chondrite normalized REE distribution patterns of the Edough diatexites show gently inclined patterns with a minor negative Eu anomaly (Eu/Eu* = 0.36-0.49), which points to a very slightly differentiated granitic source. The REE pattern and trace element data of the diatexites are similar to those of average Proterozoic upper continental crust, which suggests that they are derived mainly from upper continental crust and were deposited in continental margins. KW - Diatexites KW - Arkose KW - Protolith KW - S-type granite KW - Edough KW - Algeria Y1 - 2012 U6 - https://doi.org/10.1016/j.jafrearsci.2012.04.004 SN - 1464-343X VL - 69 IS - 13 SP - 26 EP - 33 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Zimmermann, Alexander A1 - Francke, Till A1 - Elsenbeer, Helmut T1 - Forests and erosion: Insights from a study of suspended-sediment dynamics in an overland flow-prone rainforest catchment JF - Journal of hydrology N2 - Forests seem to represent low-erosion systems, according to most, but not all, studies of suspended-sediment yield. We surmised that this impression reflects an accidental bias in the selection of monitoring sites towards those with prevailing vertical hydrological flowpaths, rather than a tight causal link between vegetation cover and erosion alone. To evaluate this conjecture, we monitored, over a 2-year period, a 3.3 ha old-growth rainforest catchment prone to frequent and widespread overland flow. We sampled stream flow at two and overland flow at three sites in a nested arrangement on a within-event basis, and monitored the spatial and temporal frequency of overland flow. Suspended-sediment concentrations were modeled with Random Forest and Quantile Regression Forest to be able to estimate the annual yields for the 2 years, which amounted to 1 t ha(-1) and 2 t ha(-1) in a year with below-average and with average precipitation, respectively. These estimates place our monitoring site near the high end of reported suspended-sediment yields and lend credence to the notion that low yields reflect primarily the dominance of vertical flowpaths and not necessarily and exclusively the kind of vegetative cover. Undisturbed forest and surface erosion are certainly no contradiction in terms even in the absence of mass movements. KW - Rainforest KW - Overland flow KW - Erosion KW - Suspended-sediment yield KW - Quantile Regression Forest model KW - Panama Canal watershed Y1 - 2012 U6 - https://doi.org/10.1016/j.jhydrol.2012.01.039 SN - 0022-1694 VL - 428 IS - 7 SP - 170 EP - 181 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zhang, Zhuodong A1 - Wieland, Ralf A1 - Reiche, Matthias A1 - Funk, Roger A1 - Hoffmann, Carsten A1 - Li, Yong A1 - Sommer, Michael T1 - Identifying sensitive areas to wind erosion in the xilingele grassland by computational fluid dynamics modelling JF - Ecological informatics : an international journal on ecoinformatics and computational ecolog N2 - In order to identify the areas in the Xilingele grassland which are sensitive to wind erosion, a computational fluid dynamics model (CFD-WEM) was used to simulate the wind fields over a region of 37 km(2) which contains different topography and land use types. Previous studies revealed the important influences of topography and land use on wind erosion in the Xilingele grassland. Topography influences wind fields at large scale, and land use influences wind fields near the ground. Two steps were designed to implement the CFD wind simulation, and they were respectively to simulate the influence of topography and surface roughness on the wind. Digital elevation model (DEM) and surface roughness length were the key inputs for the CFD simulation. The wind simulation by CFD-WEM was validated by a wind data set which was measured simultaneously at six positions in the field. Three scenarios with different wind velocities were designed based on observed dust storm events, and wind fields were simulated according to these scenarios to predict the sensitive areas to wind erosion. General assumptions that cropland is the most sensitive area to wind erosion and heavily and moderately grazed grasslands are both sensitive etc. can be refined by the modelling of CFD-WEM. Aided by the results of this study, the land use planning and protection measures against wind erosion can be more efficient. Based on the case study in the Xilingele grassland, a method of regional wind erosion assessment aided by CFD wind simulation is summarized. The essence of this method is a combination of CFD wind simulation and determination of threshold wind velocity for wind erosion. Because of the physically-based simulation and the flexibility of the method, it can be generalised to other regions. KW - Sensitive areas KW - Wind erosion KW - Computational fluid dynamics KW - Grassland KW - Surface roughness Y1 - 2012 U6 - https://doi.org/10.1016/j.ecoinf.2011.12.002 SN - 1574-9541 VL - 8 IS - 5 SP - 37 EP - 47 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zhang, Zhuo-dong A1 - Wieland, Ralf A1 - Reiche, Matthias A1 - Funk, Roger A1 - Hoffmann, Carsten A1 - Li, Yong A1 - Sommer, Michael T1 - A computational fluid dynamics model for wind simulation: model implementation and experimental validation JF - Journal of Zhejiang University : an international journal ; Science A, Applied physics & engineering : an international applied physics & engineering journal N2 - To provide physically based wind modelling for wind erosion research at regional scale, a 3D computational fluid dynamics (CFD) wind model was developed. The model was programmed in C language based on the Navier-Stokes equations, and it is freely available as open source. Integrated with the spatial analysis and modelling tool (SAMT), the wind model has convenient input preparation and powerful output visualization. To validate the wind model, a series of experiments was conducted in a wind tunnel. A blocking inflow experiment was designed to test the performance of the model on simulation of basic fluid processes. A round obstacle experiment was designed to check if the model could simulate the influences of the obstacle on wind field. Results show that measured and simulated wind fields have high correlations, and the wind model can simulate both the basic processes of the wind and the influences of the obstacle on the wind field. These results show the high reliability of the wind model. A digital elevation model (DEM) of an area (3800 m long and 1700 m wide) in the Xilingele grassland in Inner Mongolia (autonomous region, China) was applied to the model, and a 3D wind field has been successfully generated. The clear implementation of the model and the adequate validation by wind tunnel experiments laid a solid foundation for the prediction and assessment of wind erosion at regional scale. KW - Wind model KW - Computational fluid dynamics (CFD) KW - Wind erosion KW - Wind tunnel experiments KW - Spatial analysis and modelling tool (SAMT) KW - Open source Y1 - 2012 U6 - https://doi.org/10.1631/jzus.A1100231 SN - 1673-565X VL - 13 IS - 4 SP - 274 EP - 283 PB - Zhejiang University Press CY - Hangzou ER - TY - JOUR A1 - Zhang, Chengjun A1 - Zhang, Wanyi A1 - Feng, Zhaodong A1 - Mischke, Steffen A1 - Gao, Xiang A1 - Gao, Dou A1 - Sun, Feifei T1 - Holocene hydrological and climatic change on the northern Mongolian Plateau based on multi-proxy records from Lake Gun Nuur JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - A multi-proxy study including analyses of delta C-13(org) for the lake sediment core GN-02 and grain size, TOC. CaCO3 content, delta C-13(carb) and delta O-18(carb) of bulk carbonate, and the mineralogy of the parallel core GN-04 from Gun Nuur was performed to reconstruct the Holocene hydrology and climate on the northern Mongolian Plateau. The chronology was established using 40 C-14 dates of bulk organic matter in addition to nine previously published radiocarbon dates for core GN-02, and further five C-14 dates for the new core GN-04. A lake reservoir effect of 1060 C-14 years was determined as the intercept of the high-resolution GN-02 age-depth model at the modern sediment surface. The size of the reservoir effect is supported by the age of the core-top sample (1200 +/- 40 C-14 years) and the determined difference between a wood-derived radiocarbon age from the GN-02 core base and the age-model inferred age for bulk organic matter at the same stratigraphic level (1000 C-14 years). Low lake level and prevailing aeolian sediment deposition at Gun Nuur under dry conditions were recorded during the earliest Holocene (> 10,800-10,300 cal a BP). Gun Nuur expanded under significantly wetter conditions between 10,300 and 7000 cal a BP. Unstable climate conditions existed in the mid Holocene (7000-2500 cal a BP) and three periods of low lake-levels and significantly drier conditions were recorded between 7000-5700, 4100-3600 and 3000-2500 cal a BP. Intermediate lake levels were inferred for the intervening periods. Around 2500 cal a BP, the climate change and wetter conditions were established again. As a consequence, the lake level of Gun Nuur rose again due to higher effective moisture and the relatively wet present conditions were achieved ca. 1600 cal a BP. Our results suggest that the initial Holocene climate change on the northern Mongolian Plateau was not accompanied by a rapid increase in precipitation as on the Tibetan Plateau. The establishment of wetter conditions in northern Mongolia lagged behind the early Holocene moisture increase on the Tibetan Plateau by ca. 1000 years. Subsiding dry air in the north of the Tibetan Plateau resulted from the strengthened summer monsoon on the Tibetan Plateau during the period of maximum summer insolation and probably inhibited a significant precipitation increase in Mongolia. The significant moisture increase in the Gun Nuur region at ca. 10.3 cal ka BP is probably not related to the northward shift of the present summer monsoon boundary or the moisture delivery from the northern Atlantic through the westerlies. Instead, water from melting snow, ice and frozen ground and the generation of precipitation from the local recycling of moisture are discussed as possible moisture source for the early onset of wetter conditions on the Mongolian Plateau. KW - Multi-proxy record KW - Sediment geochemistry KW - Mineralogy KW - Paleohydrology KW - Holocene KW - Mongolia Y1 - 2012 U6 - https://doi.org/10.1016/j.palaeo.2012.01.032 SN - 0031-0182 VL - 323 IS - 6 SP - 75 EP - 86 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zamagni, Jessica A1 - Mutti, Maria A1 - Kosir, Adrijan T1 - The evolution of mid paleocene-early eocene coral communities how to survive during rapid global warming JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - Today, diverse communities of zooxanthellate corals thrive, but do not build reef, under a wide range of environmental conditions. In these settings they inhabit natural bottom communities, sometimes forming patch-reefs, coral carpets and knobs. Episodes in the fossil record, characterized by limited coral-reef development but widespread occurrence of coral-bearing carbonates, may represent the fossil analogs of these non-reef building, zooxanthellate coral communities. If so, the study of these corals could have valuable implications for paleoenvironmental reconstructions. Here we focus on the evolution of early Paleogene corals as a fossil example of coral communities mainly composed by zooxanthellate corals (or likely zooxanthellate), commonly occurring within carbonate biofacies and with relatively high diversity but with a limited bioconstructional potential as testified by the reduced record of coral reefs. We correlate changes of bioconstructional potential and community compositions of these fossil corals with the main ecological/environmental conditions at that time. The early Paleogene greenhouse climate was characterized by relatively short pulses of warming with the most prominent occurring at the Paleocene-Eocene boundary (PETM event), associated with high weathering rates, nutrient fluxes, and pCO(2) levels. A synthesis of coral occurrences integrated with our data from the Adriatic Carbonate Platform (SW Slovenia) and the Minervois region (SW France), provides evidence for temporal changes in the reef-building capacity of corals associated with a shift in community composition toward forms adapted to tolerate deteriorating sea-water conditions. During the middle Paleocene coral-algal patch reefs and barrier reefs occurred from shallow-water settings, locally with reef-crest structures. A first shift can be traced from middle Paleocene to late Paleocene, with small coral-algal patch reefs and coral-bearing mounds development in shallow to intermediate water depths. In these mounds corals were highly subordinated as bioconstructors to other groups tolerant to higher levels of trophic resources (calcareous red algae, encrusting foraminifera, microbes, and sponges). A second shift occurred at the onset of the early Eocene with a further reduction of coral framework-building capacity. These coral communities mainly formed knobs in shallow-water, turbid settings associated with abundant foraminiferal deposits. We suggest that environmental conditions other than high temperature determined a combination of interrelated stressors that limited the coral-reef construction. A continuous enhancement of sediment load/nutrients combined with geochemical changes of ocean waters likely displaced corals as the main bioconstructors during the late Paleocene-early Eocene times. Nonetheless, these conditions did not affect the capacity of some corals to colonize the substrate, maintain biodiversity, and act as locally important carbonate-sediment producers, suggesting broad environmental tolerance limits of various species of corals. The implications of this study include clues as to how both ancient and modern zooxanthellate corals could respond to changing climate. KW - Zooxanthellate corals KW - Early Paleogene KW - PETM KW - Nutrients KW - Ecological competition KW - Ocean acidification Y1 - 2012 U6 - https://doi.org/10.1016/j.palaeo.2011.12.010 SN - 0031-0182 VL - 317 IS - 2 SP - 48 EP - 65 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zamagni, Jessica A1 - Mutti, Maria A1 - Ballato, Paolo A1 - Kosir, Adrijan T1 - The Paleocene-Eocene thermal maximum (PETM) in shallow-marine successions of the Adriatic carbonate platform (SW Slovenia) JF - Geological Society of America bulletin N2 - The Paleocene-Eocene thermal maximum represents one of the most rapid and extreme warming events in the Cenozoic. Shallow-water stratigraphic sections from the Adriatic carbonate platform offer a rare opportunity to learn about the nature of Paleocene-Eocene thermal maximum and the effects on shallow-water ecosystems. We use carbon and oxygen isotope stratigraphy, in conjunction with detailed larger benthic foraminiferal biostratigraphy, to establish a high-resolution paleoclimatic record for the Paleocene-Eocene thermal maximum. A prominent negative excursion in delta C-13 curves of bulk-rock (similar to 1 parts per thousand-3 parts per thousand), matrix (similar to 4 parts per thousand), and foraminifera (similar to 6 parts per thousand) is interpreted as the carbon isotope excursion during the Paleocene-Eocene thermal maximum. The strongly C-13-depleted delta(1)d(3)C record of our shallow-marine carbonates compared to open-marine records could result from organic matter oxidation, suggesting intensified weathering, runoff, and organic matter flux. The Ilerdian larger benthie foraminiferal turnover is documented in detail based on high-resolution correlation with the carbon isotopic excursion. The turnover is described as a two-step process, with the first step (early Ilerdian) marked by a rapid diversification of small alveolinids and nummulitids with weak adult dimorphism, possibly as adaptations to fluctuating Paleocene-Eocene thermal maximum nutrient levels, and a second step (middle Ilerdian) characterized by a further specific diversification, increase of shell size, and well-developed adult dimorphism. Within an evolutionary scheme controlled by long-term biological processes, we argue that high seawater temperatures could have stimulated the early Ilerdian rapid specific diversification. Together, these data help elucidate the effects of global warming and associated feedbacks in shallow-water ecosystems, and by inference, could serve as an assessment analog for future changes. Y1 - 2012 U6 - https://doi.org/10.1130/B30553.1 SN - 0016-7606 VL - 124 IS - 7-8 SP - 1071 EP - 1086 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Wulf, Hendrik A1 - Bookhagen, Bodo A1 - Scherler, Dirk T1 - Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya JF - Hydrology and earth system sciences : HESS N2 - The sediment flux through Himalayan rivers directly impacts water quality and is important for sustaining agriculture as well as maintaining drinking-water and hydropower generation. Despite the recent increase in demand for these resources, little is known about the triggers and sources of extreme sediment flux events, which lower water quality and account for extensive hydropower reservoir filling and turbine abrasion. Here, we present a comprehensive analysis of the spatiotemporal trends in suspended sediment flux based on daily data during the past decade (2001-2009) from four sites along the Sutlej River and from four of its main tributaries. In conjunction with satellite data depicting rainfall and snow cover, air temperature and earthquake records, and field observations, we infer climatic and geologic controls of peak suspended sediment concentration (SSC) events. Our study identifies three key findings: First, peak SSC events (a parts per thousand yen 99th SSC percentile) coincide frequently (57-80%) with heavy rainstorms and account for about 30% of the suspended sediment flux in the semi-arid to arid interior of the orogen. Second, we observe an increase of suspended sediment flux from the Tibetan Plateau to the Himalayan Front at mean annual timescales. This sediment-flux gradient suggests that averaged, modern erosion in the western Himalaya is most pronounced at frontal regions, which are characterized by high monsoonal rainfall and thick soil cover. Third, in seven of eight catchments, we find an anticlockwise hysteresis loop of annual sediment flux variations with respect to river discharge, which appears to be related to enhanced glacial sediment evacuation during late summer. Our analysis emphasizes the importance of unconsolidated sediments in the high-elevation sector that can easily be mobilized by hydrometeorological events and higher glacial-meltwater contributions. In future climate change scenarios, including continuous glacial retreat and more frequent monsoonal rainstorms across the Himalaya, we expect an increase in peak SSC events, which will decrease the water quality and impact hydropower generation. Y1 - 2012 U6 - https://doi.org/10.5194/hess-16-2193-2012 SN - 1027-5606 VL - 16 IS - 7 SP - 2193 EP - 2217 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Willner, Arne P. A1 - Massonne, Hans-Joachim A1 - Ring, Uwe A1 - Sudo, Masafumi A1 - Thomson, Stuart N. T1 - P-T evolution and timing of a late Palaeozoic fore-arc system and its heterogeneous Mesozoic overprint in north-central Chile (latitudes 31-32 degrees S) JF - Geological magazine N2 - In the late Palaeozoic fore-arc system of north-central Chile at latitudes 31-32 degrees S (from the west to the east) three lithotectonic units are telescoped within a short distance by a Mesozoic strikeslip event (derived peak P-T conditions in brackets): (1) the basally accreted Choapa Metamorphic Complex (CMC; 350-430 degrees C, 6-9 kbar), (2) the frontally accreted Arrayan Formation (AF; 280-320 degrees C, 4-6 kbar) and (3) the retrowedge basin of the Huentelauquen Formation (HF; 280-320 degrees C, 3-4 kbar). In the CMC, Ar-Ar spot ages locally date white-mica formation at peak P-T conditions and during early exhumation at 279-242 Ma. In a local garnet mica-schist intercalation (570-585 degrees C, 11-13 kbar) Ar-Ar spot ages refer to the ascent from the subduction channel at 307-274 Ma. Portions of the CMC were isobarically heated to 510-580 degrees C at 6.6-8.5 kbar. The age of peak P-T conditions in the AF can only vaguely be approximated at >= 310 Ma by relict fission-track ages consistent with the observation that frontal accretion occurred prior to basal accretion. Zircon fission-track dating indicates cooling below similar to 280 degrees C at similar to 248 Ma in the CMC and the AF, when a regional unconformity also formed. Ar-Ar white-mica spot ages in parts of the CMC and within the entire AF and HF point to heterogeneous resetting during Mesozoic extensional and shortening events at similar to 245-240 Ma, similar to 210-200 Ma, similar to 174-159 Ma and similar to 142-127 Ma. The zircon fission-track ages are locally reset at 109-96 Ma. All resetting of Ar-Ar white-mica ages is proposed to have occurred by in situ dissolution/precipitation at low temperature in the presence of locally penetrating hydrous fluids. Hence syn-and postaccretionary events in the fore-arc system can still be distinguished and dated in spite of its complex heterogeneous postaccretional overprint. KW - Ar-Ar white-mica dating KW - zircon fission-track dating KW - accretionary prism KW - frontal accretion KW - basal accretion KW - thermal overprint KW - age resetting Y1 - 2012 U6 - https://doi.org/10.1017/S0016756811000641 SN - 0016-7568 VL - 149 IS - 2 SP - 177 EP - 207 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Wilke, Franziska Daniela Helena A1 - Vasquez, Monica A1 - Wiersberg, Thomas A1 - Naumann, Rudolf A1 - Erzinger, Jörg T1 - On the interaction of pure and impure supercritical CO2 with rock forming minerals in saline aquifers: An experimental geochemical approach JF - Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry N2 - The aim of this experimental study was to evaluate and compare the geochemical impact of pure and impure CO2 on rock forming minerals of possible CO2 storage reservoirs. This geochemical approach takes into account the incomplete purification of industrial captured CO2 and the related effects during injection, and provides relevant data for long-term storage simulations of this specific greenhouse gas. Batch experiments were conducted to investigate the interactions of supercritical CO2, brine and rock-forming mineral concentrates (albite, microcline, kaolinite, biotite, muscovite, calcite, dolomite and anhydrite) using a newly developed experimental setup. After up to 42 day (1000 h) experiments using pure and impure supercritical CO2 the dissolution and solution characteristics were examined by XRD, XRF, SEM and EDS for the solid, and ICP-MS and IC for the fluid reactants, respectively. Experiments with mixtures of supercritical CO2 (99.5 vol.%) and SO2 or NO2 impurities (0.5 vol.%) suggest the formation of H2SO4 and HNO3, reflected in pH values between 1 and 4 for experiments with silicates and anhydrite and between 5 and 6 for experiments with carbonates. These acids should be responsible for the general larger amount of cations dissolved from the mineral phases compared to experiments using pure CO2. For pure CO2 a pH of around 4 was obtained using silicates and anhydrite, and 7-8 for carbonates. Dissolution of carbonates was observed after both pure and impure CO2 experiments. Anhydrite was corroded by approximately 50 wt.% and gypsum precipitated during experiments with supercritical CO2 + NO2. Silicates do not exhibit visible alterations during all experiments but released an increasing amount of cations in the reaction fluid during experiments with impure CO2. Nonetheless, precipitated secondary carbonates could not be identified. Y1 - 2012 U6 - https://doi.org/10.1016/j.apgeochem.2012.04.012 SN - 0883-2927 VL - 27 IS - 8 SP - 1615 EP - 1622 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Wilke, Franziska Daniela Helena A1 - Sobel, Edward A1 - O'Brien, Patrick J. A1 - Stockli, Daniel F. T1 - Apatite fission track and (U-Th)/He ages from the Higher Himalayan Crystallines, Kaghan Valley, Pakistan: Implications for an Eocene Plateau and Oligocene to Pliocene exhumation JF - Journal of Asian earth sciences N2 - Apatite fission track and apatite and zircon (U-Th)/He ages were obtained from high- and ultra high-pressure rocks from the Kaghan Valley, Pakistan. Four samples from the high altitude northern parts of the valley yielded apatite fission track ages between 24.5 +/- 3.7 and 15.6 +/- 2.1 Ma and apatite (U-Th)/He ages between 21.0 +/- 0.6 and 5.3 +/- 0.2 Ma. These data record cooling of the formerly deeply-subducted high-grade metamorphic rocks induced by denudation and exhumation consistent with extension and back sliding along the reactivated, normal-acting Main Mantle Thrust. Overlap at around 10 Ma between fission track and (U-Th)/He ages is recognised at one location (Besal) showing that fast cooling occurred due to brittle reactivation of a former thrust fault. Widespread Miocene cooling is also evident in adjacent areas to the west (Deosai Plateau, Tso Moran), most likely related to uplift and unroofing linked to continued underplating of the Indian lower crust beneath Ladakh and Kohistan in the Late Eocene to Oligocene. In the southernmost part of the study area, near Naran, two significantly younger Late Miocene to Pliocene apatite fission track ages of 7.6 +/- 2.1 to 4.0 +/- 0.5 Ma suggest a spatial and temporal separation of exhumation processes. These younger ages are best explained by enhanced Late Miocene uplift and erosion driven by thrusting along the Main Boundary Thrust. KW - NW Himalaya KW - Kaghan Valley KW - Thermochronology KW - AFT KW - (U-Th)/He KW - Cooling rates Y1 - 2012 U6 - https://doi.org/10.1016/j.jseaes.2012.06.014 SN - 1367-9120 VL - 59 IS - 3 SP - 14 EP - 23 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Wende, Wolfgang A1 - Wojtkiewicz, Wera A1 - Marschall, Ilke A1 - Heiland, Stefan A1 - Lipp, Torsten A1 - Reinke, Markus A1 - Schaal, Peter A1 - Schmidt, Catrin T1 - Putting the plan into practice implementation of proposals for measures of local landscape plans JF - Landscape research N2 - The knowledge of the effectiveness of local landscape planning in Germany is in the main limited to particular cases and derives mostly from qualitative single case studies. This applies especially to the implementation of measures defined by landscape plans. To fill that gap, the paper focuses on the implementation of those measures. Furthermore, it discusses the factors and framework conditions which are crucial for this implementation. The potential factors and conditions of influence were derived from theory and compiled in 20 investigation hypotheses. In order to gain information on the execution of the measures, 28 randomly selected plans were first analysed, then interviews were carried out with administration representatives. It can be stated that landscape planning has positively influenced the development of nature and landscape in the investigated municipalities. A considerable number of measures had been implemented, although landscape planning as a supply-side instrument proposes generally a very large number of measures. Factors with a positive effect on the implementation of landscape planning measures are pointed out. KW - Landscape planning KW - nature conservation KW - effectiveness KW - quantitative research KW - Germany KW - municipality Y1 - 2012 U6 - https://doi.org/10.1080/01426397.2011.592575 SN - 0142-6397 VL - 37 IS - 4 SP - 483 EP - 500 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Weber, Michael H. A1 - Helwig, S. L. A1 - Bauer, Klaus A1 - Haberland, Christian A1 - Koch, Olaf A1 - Ryberg, T. A1 - Maercklin, N. A1 - Ritter, O. A1 - Schulze, A. T1 - Near-surface properties of an active fault derived by joint interpretation of different geophysical methods - the Arava/Araba Fault in the Middle East JF - Near surface geophysics N2 - The motion of tectonic plates is accommodated at fault zones. One of the unanswered questions about fault zones relates to the role they play in controlling shallow and local hydrology. This study focuses on the Arava/Araba Fault (AF) zone, the southern portion of the Dead Sea Transform (DST) in the Middle East. We combine seismic and electromagnetic methods (EM) to image the geometry and map the petro-physical properties and water occurrence in the top 100 m of this active fault. For three profiles, P-velocity and resistivity images were derived independently. Using a neural network cluster analysis three classes with similar P-velocity and resistivities could then be determined from these images. These classes correspond to spatial domains of specific material and wetness. The first class occurs primarily east of the fault consisting of 'wet' sand (dunes) and brecciated sediments, whereas the second class composed of similar material located west of the fault is 'dry'. The third class lies at depth below ca. 50 m and is composed of highly deformed and weathered Precambrian rocks that constitute the multi-branch fault zone of the AF at this location. The combination of two independent measurements like seismics and EM linked by a stringent mathematical approach has thus shown the potential to delineate the interplay of lithology and water near active faults. Y1 - 2012 U6 - https://doi.org/10.3997/1873-0604.2012031 SN - 1569-4445 VL - 10 IS - 5 SP - 381 EP - 390 PB - European Association of Geoscientists & Engineers CY - Houten ER - TY - JOUR A1 - Wang, Yongbo A1 - Liu, Xingqi A1 - Mischke, Steffen A1 - Herzschuh, Ulrike T1 - Environmental constraints on lake sediment mineral compositions from the Tibetan Plateau and implications for paleoenvironment reconstruction JF - Journal of paleolimnolog N2 - Inorganic minerals form a major component of lacustrine sediments and have the potential to reveal detailed information on previous climatic and hydrological conditions. The ability to extract such information however, has been restricted by a limited understanding of the relationships between minerals and the environment. In an attempt to fill in this gap in our knowledge, 146 surface sediment samples have been investigated from 146 lakes on the Tibetan Plateau. The mineral compositions derived from these samples by X-Ray Diffraction (XRD) were used to examine the relationships between mineral compositions and the environmental variables determined for each site. Statistical techniques including Multivariate regression trees (MRT) and Redundancy Analysis (RDA), based on the mineral spectra and environmental variables, reveal that the electrical conductivity (EC) and Mg/Ca ratios of lake water are the most important controls on the composition of endogenic minerals. No endogenic minerals precipitate under hyper-fresh water conditions (EC lower than 0.13 mS/cm), with calcite commonly forming in water with EC values above 0.13 mS/cm. Between EC values of 0.13 and 26 mS/cm the mineral composition of lake sediments can be explained in terms of variations in the Mg/Ca ratio: calcite dominates at Mg/Ca ratios of less than 33, whereas aragonite commonly forms when the ratio is greater than 33. Where EC values are between 26 and 39 mS/cm, monohydrocalcite precipitates together with calcite and aragonite; above 39 mS/cm, gypsum and halite commonly form. Information on the local geological strata indicates that allogenic (detrital) mineral compositions are primarily influenced by the bedrock compositions within the catchment area. By applying these relationships to the late glacial and Holocene mineral record from Chaka Salt Lake, five lake stages have been identified and their associated EC conditions inferred. The lake evolved from a freshwater lake during the late glacial (before 11.4 cal. ka BP) represented by the lowest EC values (< 0.13 mS/cm), to a saline lake with EC values slightly higher than 39 mS/cm during the early and mid Holocene (ca. 11.4-5.3 cal. ka BP), and finally to a salt lake (after 5.3 cal. ka BP). These results illustrate the utility of our mineral-environmental model for the quantitative reconstruction of past environmental conditions from lake sediment records. KW - Mineral composition KW - XRD KW - Multivariate regression trees KW - Electrical conductivity KW - Paleolimnology KW - Tibetan Plateau Y1 - 2012 U6 - https://doi.org/10.1007/s10933-011-9549-2 SN - 0921-2728 VL - 47 IS - 1 SP - 71 EP - 85 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Wang, Yongbo A1 - Liu, Xingqi A1 - Herzschuh, Ulrike A1 - Yang, Xiangdong A1 - Birks, H. John B. A1 - Zhang, Enlou A1 - Tong, Guobang T1 - Temporally changing drivers for late-Holocene vegetation changes on the northern Tibetan Plateau JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - Fossil pollen records have been widely used as indicators of past changes in vegetation and variations in climate. The driving mechanisms behind these vegetation changes have, however, remained unclear. In order to evaluate vegetation changes that have occurred in the northern part of the Tibetan Plateau and the possible drivers behind these changes, we have applied a moving-window Redundancy Analysis (RDA) to high resolution (10-15 years) pollen and sedimentary data from Lake Kusai covering the last 3770 years. Our analyses reveal frequent fluctuations in the relative abundances of alpine steppe and alpine desert components. The sedimentary proxies (including total organic carbon content, total inorganic carbon content, and "end-member" indices from grain-size analyses) that explain statistically some of the changes in the pollen assemblage vary significantly with time, most probably reflecting multiple underlying driving processes. Climate appears to have had an important influence on vegetation changes when conditions were relatively wet and stable. However, a gradual decrease in vegetation cover was identified after 1500 cal a BP, after which the vegetation appears to have been affected more by extreme events such as dust-storms or fluvial erosion than by general climatic trends. Furthermore, pollen spectra over the last 600 years are shown by Procrustes analysis to be statistically different from those recovered from older samples, which we attribute to increased human impact that resulted in unprecedented changes to the vegetation composition. Overall, changes in vegetation and climate on the northern part of the Tibetan Plateau appear to have roughly followed the evolution of the Asian Summer Monsoon. After taking into account the highly significant millennial (1512 years) periodicity revealed by time-series analysis, the regional vegetation and climate changes also show variations that appear to match variations in the mid-latitude westerlies. KW - Asian Summer Monsoon KW - Late-Holocene KW - Pollen KW - Procrustes analysis KW - Redundancy analysis KW - Tibetan Plateau KW - Vegetation KW - Westerlies Y1 - 2012 U6 - https://doi.org/10.1016/j.palaeo.2012.06.022 SN - 0031-0182 VL - 353 IS - 8 SP - 10 EP - 20 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Vorpahl, Peter A1 - Elsenbeer, Helmut A1 - Märker, Michael A1 - Schröder-Esselbach, Boris T1 - How can statistical models help to determine driving factors of landslides? JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Landslides are a hazard for humans and artificial structures. From an ecological point of view, they represent an important ecosystem disturbance, especially in tropical montane forests. Here, shallow translational landslides are a frequent natural phenomenon and one local determinant of high levels of biodiversity. In this paper, we apply weighted ensembles of advanced phenomenological models from statistics and machine learning to analyze the driving factors of natural landslides in a tropical montane forest in South Ecuador. We exclusively interpret terrain attributes, derived from a digital elevation model, as proxies to several driving factors of landslides and use them as predictors in our models which are trained on a set of five historical landslide inventories. We check the model generality by transferring them in time and use three common performance criteria (i.e. AUC, explained deviance and slope of model calibration curve) to, on the one hand, compare several state-of-the-art model approaches and on the other hand, to create weighted model ensembles. Our results suggest that it is important to consider more than one single performance criterion. Approaching our main question, we compare responses of weighted model ensembles that were trained on distinct functional units of landslides (i.e. initiation, transport and deposition zones). This way, we are able to show that it is quite possible to deduce driving factors of landslides, if the consistency between the training data and the processes is maintained. Opening the 'black box' of statistical models by interpreting univariate model response curves and relative importance of single predictors regarding their plausibility, we provide a means to verify this consistency. With the exception of classification tree analysis, all techniques performed comparably well in our case study while being outperformed by weighted model ensembles. Univariate response curves of models trained on distinct functional units of landslides exposed different shapes following our expectations. Our results indicate the occurrence of landslides to be mainly controlled by factors related to the general position along a slope (i.e. ridge, open slope or valley) while landslide initiation seems to be favored by small scale convexities on otherwise plain open slopes. KW - Landslides KW - Tropical montane forests KW - Statistical modeling KW - Model comparison KW - Artificial neuronal network KW - Classification trees KW - Random forests KW - Boosted regression trees KW - Generalized linear models KW - Multivariate adaptive regression splines KW - Maximum entropy method KW - Weighted model ensembles Y1 - 2012 U6 - https://doi.org/10.1016/j.ecolmodel.2011.12.007 SN - 0304-3800 SN - 1872-7026 VL - 239 IS - 7 SP - 27 EP - 39 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Vinnik, Lev A1 - Silveira, Graca A1 - Kiselev, Sergei A1 - Farra, Veronique A1 - Weber, Michael H. A1 - Stutzmann, Eleonore T1 - Cape verde hotspot from the upper crust to the top of the lower mantle JF - Earth & planetary science letters N2 - We investigate the crust, upper mantle and mantle transition zone of the Cape Verde hotspot by using seismic P and S receiver functions from several tens of local seismograph stations. We find a strong discontinuity at a depth of similar to 10 km underlain by a similar to 15-km thick layer with a high (similar to 1.9) Vp/Vs velocity ratio. We interpret this discontinuity and the underlying layer as the fossil Moho, inherited from the pre-hotspot era, and the plume-related magmatic underplate. Our uppermost-mantle models are very different from those previously obtained for this region: our S velocity is much lower and there are no indications of low densities. Contrary to previously published arguments for the standard transition zone thickness our data indicate that this thickness under the Cape Verde islands is up to similar to 30 km less than in the ambient mantle. This reduction is a combined effect of a depression of the 410-km discontinuity and an uplift of the 660-km discontinuity. The uplift is in contrast to laboratory data and some seismic data on a negligible dependence of depth of the 660-km discontinuity on temperature in hotspots. A large negative pressure-temperature slope which is suggested by our data implies that the 660-km discontinuity may resist passage of the plume. Our data reveal beneath the islands a reduction of S velocity of a few percent between 470-km and 510-km depths. The low velocity layer in the upper transition zone under the Cape Verde archipelago is very similar to that previously found under the Azores and a few other hotspots. In the literature there are reports on a regional 520-km discontinuity, the impedance of which is too large to be explained by the known phase transitions. Our observations suggest that the 520-km discontinuity may present the base of the low-velocity layer in the transition zone. KW - hotspot KW - plume KW - crust KW - upper mantle KW - mantle transition zone KW - receiver function Y1 - 2012 U6 - https://doi.org/10.1016/j.epsl.2011.12.017 SN - 0012-821X VL - 319 IS - 4 SP - 259 EP - 268 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Vinnik, L. A1 - Kiselev, S. A1 - Weber, Michael H. A1 - Oreshin, S. A1 - Makeyeva, L. T1 - Frozen and active seismic anisotropy beneath southern Africa JF - Geophysical research letters N2 - P receiver functions from 23 stations of the SASE experiment in southern Africa are inverted simultaneously with SKS waveforms for azimuthal anisotropy in the upper mantle. Our analysis resolves the long-standing issue of depth dependence and origins of anisotropy beneath southern Africa. In the uppermost mantle we observe anisotropy with a nearly E-W fast direction, parallel to the trend of the Limpopo belt. This anisotropy may be frozen since the Archean. At a depth of 160 km the fast direction of anisotropy changes to 40 degrees and becomes close to the recent plate motion direction. This transition is nearly coincident in depth with activation of dominant glide systems in olivine and with a pronounced change in other properties of the upper mantle. Another large change in the fast direction of anisotropy corresponds to the previously found low-S-velocity layer atop the 410-km discontinuity. Citation: Vinnik, L., S. Kiselev, M. Weber, S. Oreshin, and L. Makeyeva (2012), Frozen and active seismic anisotropy beneath southern Africa, Geophys. Res. Lett., 39, L08301, doi: 10.1029/2012GL051326. Y1 - 2012 U6 - https://doi.org/10.1029/2012GL051326 SN - 0094-8276 VL - 39 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Van der Meeren, T. A1 - Mischke, Steffen A1 - Sunjidmaa, N. A1 - Herzschuh, Ulrike A1 - Ito, E. A1 - Martens, K. A1 - Verschuren, Dirk T1 - Subfossil ostracode assemblages from Mongolia quantifying response for paleolimnological applications JF - Ecological indicators : integrating monitoring, assessment and management N2 - Ostracodes (Ostracoda, Crustacea) are aquatic micro-crustaceans with a significant representation in the fossil record. If the environmental influence on the species composition of their communities is robustly quantified, past changes in ostracode communities reflected in fossil assemblages can be used for paleo-environmental reconstruction. We analyzed ostracode assemblages in recently deposited surface sediments from 56 lakes in western and central Mongolia, and simultaneously recorded local water chemistry and solute concentration in order to elucidate the distribution of individual ostracode species in relation to these broad environmental gradients. Multivariate analysis indicated that the species variation in ostracode assemblages could be mainly attributed to variations in percent calcium (%Ca) relative to total cation content, mean annual precipitation, calcium concentration, alkalinity, percent bicarbonate relative to total anion content, and mean July temperature. This matches well with the results of a similar analysis on presence/absence data of living ostracodes in nearshore samples, even though some differences exist between the faunal composition of both datasets. The documented response of ostracode species to environmental variation tracks the typical solute evolutionary pathway for surface waters in this region, characterized by calcite precipitation and consequent depletion in dissolved calcium. Hence, the best quantitative inference model (WA-PLS model with R-jack(2) = 0.70, RMSEP = 0.40) for paleolimnological application was obtained for %Ca. Comparison between this model and a specific conductance (SC) inference model based on the same dataset, and based on ostracode datasets from different regions, indicated that the %Ca inference model suffers less than the SC inference model from a step-change in reconstructed values. The statistical power of different inference models based on Mongolian ostracodes are variously affected by the common dominance of a single euryhaline species (Limnocythere inopinata), limited faunal turnover in the freshwater portion of the salinity gradient, and the bimodal frequency distribution of SC among regional lakes. The latter probably represents true scarcity of lakes with intermediate salinity rather than a biased representation in our dataset. In a broader context of ostracode ecology, and with respect to regional paleolimnological applications, we highlight the potential of fossil Mongolian ostracode assemblages to trace past hydrological shifts associated with changes in groundwater inflow. KW - Ostracoda KW - Inference model KW - Central Asia KW - Paleo-ecology KW - Solute evolution Y1 - 2012 U6 - https://doi.org/10.1016/j.ecolind.2011.07.004 SN - 1470-160X SN - 1872-7034 VL - 14 IS - 1 SP - 138 EP - 151 PB - Elsevier CY - Amsterdam ER -