TY - JOUR A1 - Petrunin, Alexey G. A1 - Rioseco, Ernesto Meneses A1 - Sobolev, Stephan Vladimir A1 - Weber, Michael H. T1 - Thermomechanical model reconciles contradictory geophysical observations at the Dead Sea Basin JF - Geochemistry, geophysics, geosystems N2 - The Dead Sea Transform (DST) comprises a boundary between the African and Arabian plates. During the last 15-20 m.y. more than 100 km of left lateral transform displacement has been accumulated on the DST and about 10 km thick Dead Sea Basin (DSB) was formed in the central part of the DST. Widespread igneous activity since some 20 Ma ago and especially in the last 5 m.y., thin (60-80 km) lithosphere constrained by seismic data and absence of seismicity below the Moho, seem to be quite natural for this tectonically active plate boundary. However, surface heat flow values of less than 50-60 mW/m(2) and deep seismicity in the lower crust (deeper than 20 km) reported for this region are apparently inconsistent with the tectonic settings specific for an active continental plate boundary and with the crustal structure of the DSB. To address these inconsistencies which comprise what we call the "DST heat-flow paradox," we have developed a numerical model that assumes an erosion of initially thick and cold lithosphere just before or during the active faulting at the DST. The optimal initial conditions for the model are defined using transient thermal analysis. From the results of our numerical experiments we conclude that the entire set of observations for the DSB can be explained within the classical pull-apart model assuming that the lithosphere has been thermally eroded at about 20 Ma and the uppermost mantle in the region have relatively weak rheology consistent with experimental data for wet olivine or pyroxenite. KW - heat flow KW - pull-apart basin KW - tectonophysics KW - thermomechanical modeling KW - transform fault Y1 - 2012 U6 - https://doi.org/10.1029/2011GC003929 SN - 1525-2027 VL - 13 IS - 8 PB - American Geophysical Union CY - Washington ER -