TY - JOUR A1 - Germer, Sonja A1 - Zimmermann, Alexander A1 - Neill, Christopher A1 - Krusche, Alex V. A1 - Elsenbeer, Helmut T1 - Disproportionate single-species contribution to canopy-soil nutrient flux in an Amazonian rainforest JF - Forest ecology and management N2 - Rainfall, throughfall and stemflow were monitored on an event basis in an undisturbed open tropical rainforest with a large number of palm trees located in the southwestern Amazon basin of Brazil. Stemflow samples were collected from 24 trees with a diameter at breast height (DBH) > 5 cm, as well as eight young and four full-grown babassu palms (Attalea speciosa Mart.) for 5 weeks during the peak of the wet season. We calculated rainfall, throughfall and stemflow concentrations and fluxes of Na+, K+, Ca2+, Mg2+,, Cl-, SO42-, NO3- and H+ and stemflow volume-weighted mean concentrations and fluxes for three size classes of broadleaf trees and three size classes of palms. The concentrations of most solutes were higher in stemflow than in rainfall and increased with increasing tree and palm size. Concentration enrichments from rainfall to stemflow and throughfall were particularly high (81-fold) for NO3-. Stemflow fluxes of NO3- and H+ exceeded throughfall fluxes but stemflow fluxes of other solutes were less than throughfall fluxes. Stemflow solute fluxes to the forest soil were dominated by fluxes on babassu palms, which represented only 4% of total stem number and 10% of total basal area. For NO3-, stemflow contributed 51% of the total mass of nitrogen delivered to the forest floor (stemflow + throughfall) and represented more than a 2000-fold increase in NO3- flux compared what would have been delivered by rainfall alone on the equivalent area. Because these highly localized fluxes of both water and NO3- persist in time and space, they have the potential to affect patterns of soil moisture, microbial populations and other features of soil biogeochemistry conducive to the creation of hotspots for nitrogen leaching and denitrification, which could amount to an important fraction of total ecosystem fluxes. Because these hotspots occur over very small areas, they have likely gone undetected in previous studies and need to be considered as an important feature of the biogeochemistry of palm-rich tropical forest. KW - Stemflow KW - Throughfall KW - DBH KW - Open tropical rain forest KW - Babassu palm (Attalea speciosa Mart. synonym: Orbignya phalerata Mart.) KW - Amazonia Y1 - 2012 U6 - https://doi.org/10.1016/j.foreco.2011.11.041 SN - 0378-1127 VL - 267 IS - 2 SP - 40 EP - 49 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bäse, Frank A1 - Elsenbeer, Helmut A1 - Neill, Christopher A1 - Krusche, Alex V. T1 - Differences in throughfall and net precipitation between soybean and transitional tropical forest in the southern Amazon, Brazil JF - Agriculture, ecosystems & environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere N2 - The expansion of soybean cultivation into the Amazon in Brazil has potential hydrological effects at local to regional scales. To determine the impacts of soybean agriculture on hydrology, a comparison of net precipitation (throughfall, stemflow) in undisturbed tropical forest and soybean fields on the southern edge of the Amazon Basin in the state of Mato Grosso is needed. This study measured throughfall with troughs and stemflow with collar collectors during two rainy seasons. The results showed that in forest 91.6% of rainfall was collected as throughfall and 0.3% as stemflow, while in soybean fields with two-month old plants, 46.2% of rainfall was collected as throughfall and 9.0% as stemflow. Hence, interception of precipitation in soybean fields was far greater than in intact forests. Differences in throughfall, stemflow and net precipitation were found to be mainly associated with differences in plant structure and stem density in transitional forest and soybean cropland. Because rainfall interception in soybean fields is higher than previously believed and because both the area of cropland and the frequency of crop cycles (double cropping) are increasing rapidly, interception needs to be reconsidered in regional water balance models when consequences of land cover changes are analyzed in the Amazon soybean frontier region. Based on the continued expansion of soybean fields across the landscape and the finding that net precipitation is lower in soy agriculture, a reduction in water availability in the long term can be assumed. KW - Throughfall KW - Net precipitation KW - Stemflow KW - Soybean KW - Tropical forest Y1 - 2012 U6 - https://doi.org/10.1016/j.agee.2012.06.013 SN - 0167-8809 VL - 159 SP - 19 EP - 28 PB - Elsevier CY - Amsterdam ER -