TY - THES A1 - Sorce, Jenny T1 - From Spitzer mid-infrared observations and measurements of peculiar velocities to constrained simulations of the local universe T1 - Von Spitzer-Beobachtungen im mittleren Infrarotbereich und Messungen der Pekuliargeschwindigkeiten zu Constrained Simulationen des Lokalen Universums N2 - Galaxies are observational probes to study the Large Scale Structure. Their gravitational motions are tracers of the total matter density and therefore of the Large Scale Structure. Besides, studies of structure formation and galaxy evolution rely on numerical cosmological simulations. Still, only one universe observable from a given position, in time and space, is available for comparisons with simulations. The related cosmic variance affects our ability to interpret the results. Simulations constrained by observational data are a perfect remedy to this problem. Achieving such simulations requires the projects Cosmic flows and CLUES. Cosmic flows builds catalogs of accurate distance measurements to map deviations from the expansion. These measures are mainly obtained with the galaxy luminosity-rotation rate correlation. We present the calibration of that relation in the mid-infrared with observational data from Spitzer Space Telescope. Resulting accurate distance estimates will be included in the third catalog of the project. In the meantime, two catalogs up to 30 and 150 Mpc/h have been released. We report improvements and applications of the CLUES' method on these two catalogs. The technique is based on the constrained realization algorithm. The cosmic displacement field is computed with the Zel'dovich approximation. This latter is then reversed to relocate reconstructed three-dimensional constraints to their precursors' positions in the initial field. The size of the second catalog (8000 galaxies within 150 Mpc/h) highlighted the importance of minimizing the observational biases. By carrying out tests on mock catalogs, built from cosmological simulations, a method to minimize observational bias can be derived. Finally, for the first time, cosmological simulations are constrained solely by peculiar velocities. The process is successful as resulting simulations resemble the Local Universe. The major attractors and voids are simulated at positions approaching observational positions by a few megaparsecs, thus reaching the limit imposed by the linear theory. N2 - Die Verteilung der Galaxien liefert wertvolle Erkenntnisse über die großräumigen Strukturen im Universum. Ihre durch Gravitation verursachte Bewegung ist ein direkter Tracer für die Dichteverteilung der gesamten Materie. Die Strukturentstehung und die Entwicklung von Galaxien wird mithilfe von numerischen Simulationen untersucht. Es gibt jedoch nur ein einziges beobachtbares Universum, welches mit der Theorie und den Ergebnissen unterschiedlicher Simulationen verglichen werden muß. Die kosmische Varianz erschwert es, das lokale Universum mit Simulationen zu reproduzieren. Simulationen, deren Anfangsbedingungen durch Beobachtungsdaten eingegrenzt sind (Constrained Simulations'') stellen eine geeignete Lösung dieses Problems dar. Die Durchführung solcher Simulationen ist das Ziel der Projekte Cosmicflows und CLUES. Im Cosmicflows-Projekt werden genaue Entfernungsmessungen von Galaxien erstellt, welche die Abweichung von der allgemeinen Hubble-Expansion abbilden. Diese Messungen werden hauptsächlich aus der Korrelation zwischen Leuchtkraft und Rotationsgeschwindigkeit von Spiralgalaxien gewonnen. In dieser Arbeit wird die Kalibrierung dieser Beziehung im mittleren Infrarot mithilfe von Daten vom Spitzer Space Telescope vorgestellt. Diese neuen Entfernungsbestimmungen werden im dritten Katalog des Cosmicflows-Projekts enthalten sein. Bisher wurden zwei Kataloge veröffentlicht, mit Entfernungen bis zu 30 beziehungsweise 150 Mpc/h. In dieser Arbeit wird die CLUES-Methode auf diese zwei Kataloge angewendet und Verbesserungen werden vorgestellt und diskutiert. Zunächst wird das kosmische Verschiebungsfeld mithilfe der Zeldovich-Näherung bestimmt. In umgekehrter Richtung kann man damit die aus heutigen Beobachtungsdaten rekonstruierten dreidimensionalen Constraints an ihren Ursprungsort im frühen Universum zurückzuversetzen. Durch den großen Datenumfang des cosmicflows-2 Katalogs (8000 Galaxien bis zu einer Entfernung von 150 Mpc/h) ist es besonders wichtig, den Einfluss verschiedener Beobachtungsfehler zu minimieren. Eine für das lokale Universum angepasste Korrekturmethode lässt sich durch die Untersuchung von Mock-Katalogen finden, welche aus kosmologischen Simulationen gewonnen werden. Schließlich stellt diese Arbeit erstmals kosmologische Simulationen vor, die ausschließlich durch Pekuliargeschwindigkeiten eingegrenzt sind. Der Erfolg dieser Methode wird dadurch bestätigt, dass die dadurch erzeugten Simulationen dem beobachteten lokalen Universum sehr ähnlich sind. Die relevanten Attraktoren und Voids liegen in den Simulationen an Positionen, welche bis auf wenige Megaparsec mit den beobachteten Positionen übereinstimmen. Die Simulationen erreichen damit die durch die lineare Theorie gegebene Genauigkeitsgrenze. KW - Beobachtungen KW - Entfernungen KW - Pekuliargeschwindigkeiten KW - Simulationen KW - observations KW - distances KW - peculiar velocities KW - simulations Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-72486 ER - TY - GEN A1 - Makwana, Kirit D. A1 - Yan, Huirong T1 - Properties of magnetohydrodynamic modes in compressively driven plasma turbulence T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We study properties of magnetohydrodynamic (MHD) eigenmodes by decomposing the data of MHD simulations into linear MHD modes-namely, the Alfven, slow magnetosonic, and fast magnetosonic modes. We drive turbulence with a mixture of solenoidal and compressive driving while varying the Alfven Mach number (M-A), plasma beta, and the sonic Mach number from subsonic to transsonic. We find that the proportion of fast and slow modes in the mode mixture increases with increasing compressive forcing. This proportion of the magnetosonic modes can also become the dominant fraction in the mode mixture. The anisotropy of the modes is analyzed by means of their structure functions. The Alfven-mode anisotropy is consistent with the Goldreich-Sridhar theory. We find a transition from weak to strong Alfvenic turbulence as we go from low to high M-A. The slow-mode properties are similar to the Alfven mode. On the other hand, the isotropic nature of fast modes is verified in the cases where the fast mode is a significant fraction of the mode mixture. The fast-mode behavior does not show any transition in going from low to high M-A. We find indications that there is some interaction between the different modes, and the properties of the dominant mode can affect the properties of the weaker modes. This work identifies the conditions under which magnetosonic modes can be a major fraction of turbulent astrophysical plasmas, including the regime of weak turbulence. Important astrophysical implications for cosmic-ray transport and magnetic reconnection are discussed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1225 KW - mhd turbulence KW - star formation KW - simulations KW - Anisotropy KW - diffusion Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-531607 SN - 1866-8372 VL - 10 IS - 3 PB - American Physical Society (APS) CY - College Park ER - TY - JOUR A1 - Al-Sa'di, Mahmoud A1 - Jaiser, Frank A1 - Bagnich, Sergey A. A1 - Unger, Thomas A1 - Blakesley, James C. A1 - Wilke, Andreas A1 - Neher, Dieter T1 - Electrical and optical simulations of a polymer-based phosphorescent organic light-emitting diode with high efficiency JF - Journal of polymer science : B, Polymer physics N2 - A comprehensive numerical device simulation of the electrical and optical characteristics accompanied with experimental measurements of a new highly efficient system for polymer-based light-emitting diodes doped with phosphorescent dyes is presented. The system under investigation comprises an electron transporter attached to a polymer backbone blended with an electronically inert small molecule and an iridium-based green phosphorescent dye which serves as both emitter and hole transporter. The device simulation combines an electrical and an optical model. Based on the known highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels of all components as well as the measured electrical and optical characteristics of the devices, we model the emissive layer as an effective medium using the dye's HOMO as hole transport level and the polymer LUMO as electron transport level. By fine-tuning the injection barriers at the electron and hole-injecting contact, respectively, in simulated devices, unipolar device characteristics were fitted to the experimental data. Simulations using the so-obtained set of parameters yielded very good agreement to the measured currentvoltage, luminancevoltage characteristics, and the emission profile of entire bipolar light-emitting diodes, without additional fitting parameters. The simulation was used to gain insight into the physical processes and the mechanisms governing the efficiency of the organic light-emitting diode, including the position and extent of the recombination zone, carrier concentration profiles, and field distribution inside the device. The simulations show that the device is severely limited by hole injection, and that a reduction of the hole-injection barrier would improve the device efficiency by almost 50%. KW - conjugated polymers KW - high performance polymers KW - organic electronics KW - organic light-emitting diode KW - simulations KW - TCAD Y1 - 2012 U6 - https://doi.org/10.1002/polb.23158 SN - 0887-6266 VL - 50 IS - 22 SP - 1567 EP - 1576 PB - Wiley-Blackwell CY - Hoboken ER -