TY - JOUR A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Multiband (X, C, L) radar amplitude analysis for a mixed sand- and gravel-bed river in the eastern Central Andes JF - Remote sensing of environment : an interdisciplinary journal N2 - Synthetic Aperture Radar (SAR) amplitude measurements from spaceborne sensors are sensitive to surface roughness conditions near their radar wavelength. These backscatter signals are often exploited to assess the roughness of plowed agricultural fields and water surfaces, and less so to complex, heterogeneous geological surfaces. The bedload of mixed sand- and gravel-bed rivers can be considered a mixture of smooth (compacted sand) and rough (gravel) surfaces. Here, we assess backscatter gradients over a large high-mountain alluvial river in the eastern Central Andes with aerially exposed sand and gravel bedload using X-band TerraSAR-X/TanDEM-X, C-band Sentinel-1, and L-band ALOS-2 PALSAR-2 radar scenes. In a first step, we present theory and hypotheses regarding radar response to an alluvial channel bed. We test our hypotheses by comparing backscatter responses over vegetation-free endmember surfaces from inside and outside of the active channel-bed area. We then develop methods to extract smoothed backscatter gradients downstream along the channel using kernel density estimates. In a final step, the local variability of sand-dominated patches is analyzed using Fourier frequency analysis, by fitting stretched-exponential and power-law regression models to the 2-D power spectrum of backscatter amplitude. We find a large range in backscatter depending on the heterogeneity of contiguous smooth- and rough-patches of bedload material. The SAR amplitude signal responds primarily to the fraction of smooth-sand bedload, but is further modified by gravel elements. The sensitivity to gravel is more apparent in longer wavelength L-band radar, whereas C- and X-band is sensitive only to sand variability. Because the spatial extent of smooth sand patches in our study area is typically< 50 m, only higher resolution sensors (e.g., TerraSAR-X/TanDEM-X) are useful for power spectrum analysis. Our results show the potential for mapping sand-gravel transitions and local geomorphic complexity in alluvial rivers with aerially exposed bedload using SAR amplitude. KW - SAR amplitude KW - Radar backscatter KW - Surface roughness KW - Fluvial KW - geomorphology KW - TerraSAR-X/TanDEM-X KW - Sentinel-1 KW - ALOS-2 PALSAR-2 Y1 - 2020 U6 - https://doi.org/10.1016/j.rse.2020.111799 SN - 0034-4257 SN - 1879-0704 VL - 246 PB - Elsevier CY - New York ER - TY - JOUR A1 - Olen, Stephanie M. A1 - Bookhagen, Bodo A1 - Strecker, Manfred T1 - Role of climate and vegetation density in modulating denudation rates in the Himalaya JF - Earth & planetary science letters N2 - Vegetation has long been hypothesized to influence the nature and rates of surface processes. We test the possible impact of vegetation and climate on denudation rates at orogen scale by taking advantage of a pronounced along-strike gradient in rainfall and vegetation density in the Himalaya. We combine 12 new Be-10 denudation rates from the Sutlej Valley and 123 published denudation rates from fluvially-dominated catchments in the Himalaya with remotely-sensed measures of vegetation density and rainfall metrics, and with tectonic and lithologic constraints. In addition, we perform topographic analyses to assess the contribution of vegetation and climate in modulating denudation rates along strike. We observe variations in denudation rates and the relationship between denudation and topography along strike that are most strongly controlled by local rainfall amount and vegetation density, and cannot be explained by along-strike differences in tectonics or lithology. A W-E along-strike decrease in denudation rate variability positively correlates with the seasonality of vegetation density (R = 0.95, p < 0.05), and negatively correlates with mean vegetation density (R = -0.84, p < 0.05). Vegetation density modulates the topographic response to changing denudation rates, such that the functional relationship between denudation rate and topographic steepness becomes increasingly linear as vegetation density increases. We suggest that while tectonic processes locally control the pattern of denudation rates across strike of the Himalaya (i.e., S-N), along strike of the orogen (i.e., E-W) climate exerts a measurable influence on how denudation rates scatter around long-term, tectonically-controlled erosion, and on the functional relationship between topography and denudation. (C) 2016 Elsevier B.V. All rights reserved. KW - geomorphology KW - erosion KW - vegetation KW - rainfall KW - Himalaya KW - 10-Be terrestrial cosmogenic nuclides Y1 - 2016 U6 - https://doi.org/10.1016/j.epsl.2016.03.047 SN - 0012-821X SN - 1385-013X VL - 445 SP - 57 EP - 67 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Bookhagen, Bodo T1 - Late quaternary climate changes and landscape evolution in the Northwest Himalaya : geomorphologic processes in the Indian Summer Monsoon Domain N2 - The India-Eurasia continental collision zone provides a spectacular example of active mountain building and climatic forcing. In order to quantify the critically important process of mass removal, I analyzed spatial and temporal precipitation patterns of the oscillating monsoon system and their geomorphic imprints. I processed passive microwave satellite data to derive high-resolution rainfall estimates for the last decade and identified an abnormal monsoon year in 2002. During this year, precipitation migrated far into the Sutlej Valley in the northwestern part of the Himalaya and reached regions behind orographic barriers that are normally arid. There, sediment flux, mean basin denudation rates, and channel-forming processes such as erosion by debris-flows increased significantly. Similarly, during the late Pleistocene and early Holocene, solar forcing increased the strength of the Indian summer monsoon for several millennia and presumably lead to analogous precipitation distribution as were observed during 2002. However, the persistent humid conditions in the steep, high-elevation parts of the Sutlej River resulted in deep-seated landsliding. Landslides were exceptionally large, mainly due to two processes that I infer for this time: At the onset of the intensified monsoon at 9.7 ka BP heavy rainfall and high river discharge removed material stored along the river, and lowered the baselevel. Second, enhanced discharge, sediment flux, and increased pore-water pressures along the hillslopes eventually lead to exceptionally large landslides that have not been observed in other periods. The excess sediments that were removed from the upstream parts of the Sutlej Valley were rapidly deposited in the low-gradient sectors of the lower Sutlej River. Timing of downcutting correlates with centennial-long weaker monsoon periods that were characterized by lower rainfall. I explain this relationship by taking sediment flux and rainfall dynamics into account: High sediment flux derived from the upstream parts of the Sutlej River during strong monsoon phases prevents fluvial incision due to oversaturation the fluvial sediment-transport capacity. In contrast, weaker monsoons result in a lower sediment flux that allows incision in the low-elevation parts of the Sutlej River. N2 - Die Indisch-Eurasische Kontinentalkollision ist ein beeindruckendes Beispiel für weitreichenden, tektonisch kontrollierten klimatischen Einfluss. Um den Einfluss von klimatisch bedingter Erosion auf die Orogenese zu testen, habe ich erosive Oberflächenprozesse, Monsunvariationen und fluviatilen Massentransfer auf verschiedenen Zeitscheiben analysiert. Um genaue Niederschläge auf einem grossen Raum zu quantifizieren, habe ich durch Wettersatelliten aufgezeichnete passive Mikrowellendaten für die letzten zehn Jahre untersucht. Erstaunlicherweise variiert der Niederschlag nur wenig von Jahr zu Jahr und ein Großteil des Regens wird durch orographische Effekte gesteuert. Im Jahre 2002 allerdings, habe ich ein abnormal starkes Monsunjahr feststellen können. Zu dieser Zeit ist der Monsunniederschlag weiter in das Gebirge vorgedrungen und hat viele Massenbewegungen wie z.B. Schuttströme und Muren ausgelöst. Dabei verdoppelten sich die Erosionsraten im Einzugsgebiet. Ich zeige anhand von Satellitenbildern, aufgenommen vor und nach dem Monsun, dass sich hierbei vor allen Dingen kleine, neue Flußläufe entwickeln. In höher gelegenen, normalerweise trockenen Gebieten findet man auch Überreste von enormen Bergstürzen und dahinter aufgestauten Seen. Datierungen dieser geomorphologischen Phänomene zeigen, dass sie nur in zwei Phasen während der letzten 30.000 Jahre auftreten: Im späten Pleistozän vor rund 27.000 Jahren und im frühen Holozän vor 8000 Jahre. Diese Zeiten sind durch einen starken Monsun, der durch die Insolation kontrolliert wird, gekennzeichnet. Analog zur Niederschlagsverteilung im Jahre 2002 ist der Monsun aber nicht nur für ein Jahr, sondern mehrere hundert oder tausend Jahre lang kontinuierlich in die heute ariden Gebiete vorgedrungen. Der erhöhte Porenwasserdruck und die erstarkten Flüsse lösten dann durch laterale Unterschneidung große Bergstürze aus, die zu keiner anderen Zeit beobachtet wurden. Die temporären Becken in den Hochlagen, die durch Bergstürze entstanden sind, entstehen in Feuchtphasen und werden in schwächeren Monsunphasen von Flüssen abgetragen und verdeutlicht die komplexe Beziehung zwischen Klima und Massentransfer verdeutlicht. ---- Anmerkung: Der Autor wurde 2005 mit dem 7. Publikationspreis des Leibniz-Kollegs Potsdam für Nachwuchswissenschaftler/innen in Naturwissenschaften ausgezeichnet. T2 - Late quaternary climate changes and landscape evolution in the Northwest Himalaya : geomorphologic processes in the Indian Summer Monsoon Domain KW - Monsun KW - Himalaja KW - Klima KW - Indien KW - Bergstürze KW - Geomorphologie KW - Asian monsoon KW - Himalaya KW - climate KW - landslides KW - geomorphology Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001956 ER -