TY - JOUR A1 - Weyrich, Alexandra A1 - Yasar, Selma A1 - Lenz, Dorina A1 - Fickel, Jörns T1 - Tissue-specific epigenetic inheritance after paternal heat exposure in male wild guinea pigs JF - Mammalian genome N2 - External temperature change has been shown to modify epigenetic patterns, such as DNA methylation, which regulates gene expression. DNA methylation is heritable, and as such provides a mechanism to convey environmental information to subsequent generations. Studies on epigenetic response to temperature increase are still scarce in wild mammals, even more so studies that compare tissue-specific epigenetic responses. Here, we aim to address differential epigenetic responses on a gene and gene pathway level in two organs, liver and testis. We chose these organs, because the liver is the main metabolic and thermoregulation organ, and epigenetic modifications in testis are potentially transmitted to the F2 generation. We focused on the transmission of DNA methylation changes to naive male offspring after paternal exposure to an ambient temperature increase of 10 degrees C, and investigated differential methylated regions of sons sired before and after the paternal exposure using Reduced Representation Bisulfite Sequencing. We detected both a highly tissue-specific epigenetic response, reflected in genes involved in organ-specific metabolic pathways, and a more general regulation of single genes epigenetically modified in both organs. We conclude that genomes are context-specifically differentially epigenetically regulated in response to temperature increase. These findings emphasize the epigenetic relevance in cell differentiation, which is essential for the specific function(s) of complex organs, and is represented in a diverse molecular regulation of genes and gene pathways. The results also emphasize the paternal contribution to adaptive processes. KW - DNA methylation KW - gene-expression KW - CPG Islands KW - stress KW - hyperthermia KW - testis Y1 - 2020 U6 - https://doi.org/10.1007/s00335-020-09832-6 SN - 0938-8990 SN - 1432-1777 VL - 31 IS - 5-6 SP - 157 EP - 169 PB - Springer CY - New York ER - TY - GEN A1 - Weyrich, Alexandra A1 - Yasar, Selma A1 - Lenz, Dorina A1 - Fickel, Jörns T1 - Tissue-specific epigenetic inheritance after paternal heat exposure in male wild guinea pigs T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - External temperature change has been shown to modify epigenetic patterns, such as DNA methylation, which regulates gene expression. DNA methylation is heritable, and as such provides a mechanism to convey environmental information to subsequent generations. Studies on epigenetic response to temperature increase are still scarce in wild mammals, even more so studies that compare tissue-specific epigenetic responses. Here, we aim to address differential epigenetic responses on a gene and gene pathway level in two organs, liver and testis. We chose these organs, because the liver is the main metabolic and thermoregulation organ, and epigenetic modifications in testis are potentially transmitted to the F2 generation. We focused on the transmission of DNA methylation changes to naive male offspring after paternal exposure to an ambient temperature increase of 10 degrees C, and investigated differential methylated regions of sons sired before and after the paternal exposure using Reduced Representation Bisulfite Sequencing. We detected both a highly tissue-specific epigenetic response, reflected in genes involved in organ-specific metabolic pathways, and a more general regulation of single genes epigenetically modified in both organs. We conclude that genomes are context-specifically differentially epigenetically regulated in response to temperature increase. These findings emphasize the epigenetic relevance in cell differentiation, which is essential for the specific function(s) of complex organs, and is represented in a diverse molecular regulation of genes and gene pathways. The results also emphasize the paternal contribution to adaptive processes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1431 KW - DNA methylation KW - gene-expression KW - CPG Islands KW - stress KW - hyperthermia KW - testis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516525 SN - 1866-8372 IS - 5-6 ER - TY - JOUR A1 - Unterberg, Marlies A1 - Leffers, Larissa A1 - Hübner, Florian A1 - Humpf, Hans-Ulrich A1 - Lepikhov, Konstantin A1 - Walter, Jörn A1 - Ebert, Franziska A1 - Schwerdtle, Tanja T1 - Toxicity of arsenite and thio-DMAV after long-term (21 days) incubation of human urothelial cells: cytotoxicity, genotoxicity and epigenetics JF - Toxicology Research N2 - This study aims to further mechanistically understand toxic modes of action after chronic inorganic arsenic exposure. Therefore long-term incubation studies in cultured cells were carried out, to display chronically attained changes, which cannot be observed in the generally applied in vitro short-term incubation studies. Particularly, the cytotoxic, genotoxic and epigenetic effects of an up to 21 days incubation of human urothelial (UROtsa) cells with pico- to nanomolar concentrations of iAsIII and its metabolite thio-DMAV were compared. After 21 days of incubation, cytotoxic effects were strongly enhanced in the case of iAsIII and might partly be due to glutathione depletion and genotoxic effects on the chromosomal level. These results are in strong contrast to cells exposed to thio-DMAV. Thus, cells seemed to be able to adapt to this arsenical, as indicated among others by an increase in the cellular glutathione level. Most interestingly, picomolar concentrations of both iAsIII and thio-DMAV caused global DNA hypomethylation in UROtsa cells, which was quantified in parallel by 5-medC immunostaining and a newly established, reliable, high resolution mass spectrometry (HRMS)-based test system. This is the first time that epigenetic effects are reported for thio-DMAV; iAsIII induced epigenetic effects occur in at least 8000 fold lower concentrations as reported in vitro before. The fact that both arsenicals cause DNA hypomethylation at really low, exposure-relevant concentrations in human urothelial cells suggests that this epigenetic effect might contribute to inorganic arsenic induced carcinogenicity, which for sure has to be further investigated in future studies. KW - induced malignant-transformation KW - genomic dna methylation KW - vitro toxicological characterization KW - thio-dimethylarsinic acid KW - bladder-cancer KW - methyltransferases dnmt3a KW - cytosine methylation KW - carcinogen exposure KW - mass-spectrometry KW - gene-expression Y1 - 2014 SN - 2045-4538 SN - 2045-452X VL - 3 IS - 6 SP - 456 EP - 464 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Unterberg, Marlies A1 - Leffers, Larissa A1 - Hübner, Florian A1 - Humpf, Hans-Ulrich A1 - Lepikhov, Konstantin A1 - Walter, Jörn A1 - Ebert, Franziska A1 - Schwerdtle, Tanja T1 - Toxicity of arsenite and thio-DMAV after long-term (21 days) incubation of human urothelial cells: cytotoxicity, genotoxicity and epigenetics N2 - This study aims to further mechanistically understand toxic modes of action after chronic inorganic arsenic exposure. Therefore long-term incubation studies in cultured cells were carried out, to display chronically attained changes, which cannot be observed in the generally applied in vitro short-term incubation studies. Particularly, the cytotoxic, genotoxic and epigenetic effects of an up to 21 days incubation of human urothelial (UROtsa) cells with pico- to nanomolar concentrations of iAsIII and its metabolite thio-DMAV were compared. After 21 days of incubation, cytotoxic effects were strongly enhanced in the case of iAsIII and might partly be due to glutathione depletion and genotoxic effects on the chromosomal level. These results are in strong contrast to cells exposed to thio-DMAV. Thus, cells seemed to be able to adapt to this arsenical, as indicated among others by an increase in the cellular glutathione level. Most interestingly, picomolar concentrations of both iAsIII and thio-DMAV caused global DNA hypomethylation in UROtsa cells, which was quantified in parallel by 5-medC immunostaining and a newly established, reliable, high resolution mass spectrometry (HRMS)-based test system. This is the first time that epigenetic effects are reported for thio-DMAV; iAsIII induced epigenetic effects occur in at least 8000 fold lower concentrations as reported in vitro before. The fact that both arsenicals cause DNA hypomethylation at really low, exposure-relevant concentrations in human urothelial cells suggests that this epigenetic effect might contribute to inorganic arsenic induced carcinogenicity, which for sure has to be further investigated in future studies. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 178 KW - induced malignant-transformation KW - genomic dna methylation KW - vitro toxicological characterization KW - thio-dimethylarsinic acid KW - bladder-cancer KW - methyltransferases dnmt3a KW - cytosine methylation KW - carcinogen exposure KW - mass-spectrometry KW - gene-expression Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-76239 SP - 456 EP - 464 ER - TY - GEN A1 - Szymanski, Jedrzej A1 - Jozefczuk, Szymon A1 - Nikoloski, Zoran A1 - Selbig, Joachim A1 - Nikiforova, Victoria A1 - Catchpole, Gareth A1 - Willmitzer, Lothar T1 - Stability of metabolic correlations under changing environmental conditions in Escherichia coli : a systems approach N2 - Background: Biological systems adapt to changing environments by reorganizing their cellula r and physiological program with metabolites representing one important response level. Different stresses lead to both conserved and specific responses on the metabolite level which should be reflected in the underl ying metabolic network. Methodology/Principal Findings: Starting from experimental data obtained by a GC-MS based high-throughput metabolic profiling technology we here develop an approach that: (1) extracts network representations from metabolic conditiondependent data by using pairwise correlations, (2) determines the sets of stable and condition-dependent correlations based on a combination of statistical significance and homogeneity tests, and (3) can identify metabolites related to the stress response, which goes beyond simple ob servation s about the changes of metabolic concentrations. The approach was tested with Escherichia colias a model organism observed under four different environmental stress conditions (cold stress, heat stress, oxidative stress, lactose diau xie) and control unperturbed conditions. By constructing the stable network component, which displays a scale free topology and small-world characteristics, we demonstrated that: (1) metabolite hubs in this reconstructed correlation networks are significantly enriched for those contained in biochemical networks such as EcoCyc, (2) particular components of the stable network are enriched for functionally related biochemical path ways, and (3) ind ependently of the response scale, based on their importance in the reorganization of the cor relation network a set of metabolites can be identified which represent hypothetical candidates for adjusting to a stress-specific response. Conclusions/Significance: Network-based tools allowed the identification of stress-dependent and general metabolic correlation networks. This correlation-network-ba sed approach does not rely on major changes in concentration to identify metabolites important for st ress adaptation, but rather on the changes in network properties with respect to metabolites. This should represent a useful complementary technique in addition to more classical approaches. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 147 KW - Small-world networks KW - saccharomyces-cerevisiae KW - trehalose synthesis KW - gene-expression KW - stress-response Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45253 ER - TY - GEN A1 - Prát, Tomáš A1 - Hajny ́, Jakub A1 - Grunewald, Wim A1 - Vasileva, Mina A1 - Molnár, Gergely A1 - Tejos, Ricardo A1 - Schmid, Markus A1 - Sauer, Michael A1 - Friml, Jiří T1 - WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17-and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain-and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1123 KW - apical-basal axis KW - arabidopsis-thaliana KW - root gravitropism KW - DNA-binding KW - gene-expression KW - transport KW - efflux KW - canalization KW - plants KW - phosphorylation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446331 SN - 1866-8372 IS - 1123 ER - TY - GEN A1 - Lämke, Jörn A1 - Bäurle, Isabel T1 - Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Plants frequently have to weather both biotic and abiotic stressors, and have evolved sophisticated adaptation and defense mechanisms. In recent years, chromatin modifications, nucleosome positioning, and DNA methylation have been recognized as important components in these adaptations. Given their potential epigenetic nature, such modifications may provide a mechanistic basis for a stress memory, enabling plants to respond more efficiently to recurring stress or even to prepare their offspring for potential future assaults. In this review, we discuss both the involvement of chromatin in stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 792 KW - remodeling atpase brahma KW - transcriptional memory KW - DNA methylation KW - transgenerational inheritance KW - acquired thermotolerance KW - Arabidopsis-thaliana KW - gene-expression KW - responses KW - protein KW - defense Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436236 SN - 1866-8372 IS - 792 ER - TY - JOUR A1 - Lämke, Jörn A1 - Bäurle, Isabel T1 - Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants JF - Genome biology : biology for the post-genomic era N2 - Plants frequently have to weather both biotic and abiotic stressors, and have evolved sophisticated adaptation and defense mechanisms. In recent years, chromatin modifications, nucleosome positioning, and DNA methylation have been recognized as important components in these adaptations. Given their potential epigenetic nature, such modifications may provide a mechanistic basis for a stress memory, enabling plants to respond more efficiently to recurring stress or even to prepare their offspring for potential future assaults. In this review, we discuss both the involvement of chromatin in stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory. KW - remodeling atpase brahma KW - transcriptional memory KW - DNA methylation KW - transgenerational inheritance KW - acquired thermotolerance KW - Arabidopsis-thaliana KW - gene-expression KW - responses KW - protein KW - defense Y1 - 2017 U6 - https://doi.org/10.1186/s13059-017-1263-6 SN - 1474-760X VL - 18 SP - 8685 EP - 8693 PB - BioMed Central CY - London ER - TY - GEN A1 - Kappel, Christian A1 - Trost, Gerda A1 - Czesnick, Hjördis A1 - Ramming, Anna A1 - Kolbe, Benjamin A1 - Vi, Song Lang A1 - Bispo, Cláudia A1 - Becker, Jörg D. A1 - de Moor, Cornelia A1 - Lenhard, Michael T1 - Genome-Wide Analysis of PAPS1-Dependent Polyadenylation Identifies Novel Roles for Functionally Specialized Poly(A) Polymerases in Arabidopsis thaliana N2 - The poly(A) tail at 3’ ends of eukaryotic mRNAs promotes their nuclear export, stability and translational efficiency, and changes in its length can strongly impact gene expression. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerases, PAPS1, PAPS2 and PAPS4. As shown by their different mutant phenotypes, these three isoforms are functionally specialized, with PAPS1 modifying organ growth and suppressing a constitutive immune response. However, the molecular basis of this specialization is largely unknown. Here, we have estimated poly(A)-tail lengths on a transcriptome-wide scale in wild-type and paps1 mutants. This identified categories of genes as particularly strongly affected in paps1 mutants, including genes encoding ribosomal proteins, cell-division factors and major carbohydrate-metabolic proteins. We experimentally verified two novel functions of PAPS1 in ribosome biogenesis and redox homoeostasis that were predicted based on the analysis of poly(A)-tail length changes in paps1 mutants. When overlaying the PAPS1-dependent effects observed here with coexpression analysis based on independent microarray data, the two clusters of transcripts that are most closely coexpressed with PAPS1 show the strongest change in poly(A)-tail length and transcript abundance in paps1 mutants in our analysis. This suggests that their coexpression reflects at least partly the preferential polyadenylation of these transcripts by PAPS1 versus the other two poly(A)-polymerase isoforms. Thus, transcriptome-wide analysis of poly(A)-tail lengths identifies novel biological functions and likely target transcripts for polyadenylation by PAPS1. Data integration with large-scale co-expression data suggests that changes in the relative activities of the isoforms are used as an endogenous mechanism to co-ordinately modulate plant gene expression. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 259 KW - comprehensive analysis KW - cytoplasmic polyadenylation KW - differential expression analysis KW - gene-expression KW - mammalian-cells KW - messenger-rna polyadenylation KW - poly(a)-binding protein KW - specificity factor KW - tail-length KW - translational control Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-96400 SP - 1 EP - 30 ER - TY - JOUR A1 - Kappel, Christian A1 - Trost, Gerda A1 - Czesnick, Hjördis A1 - Ramming, Anna A1 - Kolbe, Benjamin A1 - Vi, Son Lang A1 - Bispo, Cláudia A1 - Becker, Jörg D. A1 - de Moor, Cornelia A1 - Lenhard, Michael T1 - Genome-Wide Analysis of PAPS1-Dependent Polyadenylation Identifies Novel Roles for Functionally Specialized Poly(A) Polymerases in Arabidopsis thaliana JF - PLoS Genetics : a peer-reviewed, open-access journal N2 - The poly(A) tail at 3’ ends of eukaryotic mRNAs promotes their nuclear export, stability and translational efficiency, and changes in its length can strongly impact gene expression. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerases, PAPS1, PAPS2 and PAPS4. As shown by their different mutant phenotypes, these three isoforms are functionally specialized, with PAPS1 modifying organ growth and suppressing a constitutive immune response. However, the molecular basis of this specialization is largely unknown. Here, we have estimated poly(A)-tail lengths on a transcriptome-wide scale in wild-type and paps1 mutants. This identified categories of genes as particularly strongly affected in paps1 mutants, including genes encoding ribosomal proteins, cell-division factors and major carbohydrate-metabolic proteins. We experimentally verified two novel functions of PAPS1 in ribosome biogenesis and redox homoeostasis that were predicted based on the analysis of poly(A)-tail length changes in paps1 mutants. When overlaying the PAPS1-dependent effects observed here with coexpression analysis based on independent microarray data, the two clusters of transcripts that are most closely coexpressed with PAPS1 show the strongest change in poly(A)-tail length and transcript abundance in paps1 mutants in our analysis. This suggests that their coexpression reflects at least partly the preferential polyadenylation of these transcripts by PAPS1 versus the other two poly(A)-polymerase isoforms. Thus, transcriptome-wide analysis of poly(A)-tail lengths identifies novel biological functions and likely target transcripts for polyadenylation by PAPS1. Data integration with large-scale co-expression data suggests that changes in the relative activities of the isoforms are used as an endogenous mechanism to co-ordinately modulate plant gene expression. KW - messenger-rna polyadenylation KW - differential expression analysis KW - gene-expression KW - tail-length KW - cytoplasmic polyadenylation KW - poly(a)-binding protein KW - translational control KW - comprehensive analysis KW - specificity factor KW - mammalian-cells Y1 - 2015 U6 - https://doi.org/10.1371/journal.pgen.1005474 SN - 1553-7390 SN - 1553-7404 VL - 11 IS - 8 PB - Public Library of Science CY - San Francisco ER - TY - GEN A1 - Gorochowski, Thomas E. A1 - Ignatova, Zoya A1 - Bovenberg, Roel A. L. A1 - Roubos, Johannes A. T1 - Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Translation of protein from mRNA is a complex multi-step process that occurs at a non-uniform rate. Variability in ribosome speed along an mRNA enables refinement of the proteome and plays a critical role in protein biogenesis. Detailed single protein studies have found both tRNA abundance and mRNA secondary structure as key modulators of translation elongation rate, but recent genome-wide ribosome profiling experiments have not observed significant influence of either on translation efficiency. Here we provide evidence that this results from an inherent trade-off between these factors. We find codons pairing to high-abundance tRNAs are preferentially used in regions of high secondary structure content, while codons read by significantly less abundant tRNAs are located in lowly structured regions. By considering long stretches of high and low mRNA secondary structure in Saccharomyces cerevisiae and Escherichia coli and comparing them to randomized-gene models and experimental expression data, we were able to distinguish clear selective pressures and increased protein expression for specific codon choices. The trade-off between secondary structure and tRNA-concentration based codon choice allows for compensation of their independent effects on translation, helping to smooth overall translational speed and reducing the chance of potentially detrimental points of excessively slow or fast ribosome movement. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 816 KW - Escherichia-coli genome KW - codon adaptation index KW - folding free-energies KW - in-vivo KW - sequence determinants KW - protein-synthesis KW - single ribosomes KW - gene-expression KW - usage KW - bias Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441340 SN - 1866-8372 IS - 816 ER - TY - JOUR A1 - Fichtner, Franziska A1 - Olas, Justyna Jadwiga A1 - Feil, Regina A1 - Watanabe, Mutsumi A1 - Krause, Ursula A1 - Hoefgen, Rainer A1 - Stitt, Mark A1 - Lunn, John Edward T1 - Functional features of Trehalose-6-Phosphate Synthase 1 BT - an essential enzyme in Arabidopsis JF - The Plant Cell N2 - Tre6P synthesis by TPS1 is essential for embryogenesis and postembryonic growth in Arabidopsis, and appropriate Suc signaling by Tre6P is dependent on the noncatalytic domains of TPS1. In Arabidopsis (Arabidopsis thaliana), TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) catalyzes the synthesis of the sucrose-signaling metabolite trehalose 6-phosphate (Tre6P) and is essential for embryogenesis and normal postembryonic growth and development. To understand its molecular functions, we transformed the embryo-lethal tps1-1 null mutant with various forms of TPS1 and with a heterologous TPS (OtsA) from Escherichia coli, under the control of the TPS1 promoter, and tested for complementation. TPS1 protein localized predominantly in the phloem-loading zone and guard cells in leaves, root vasculature, and shoot apical meristem, implicating it in both local and systemic signaling of Suc status. The protein is targeted mainly to the nucleus. Restoring Tre6P synthesis was both necessary and sufficient to rescue the tps1-1 mutant through embryogenesis. However, postembryonic growth and the sucrose-Tre6P relationship were disrupted in some complementation lines. A point mutation (A119W) in the catalytic domain or truncating the C-terminal domain of TPS1 severely compromised growth. Despite having high Tre6P levels, these plants never flowered, possibly because Tre6P signaling was disrupted by two unidentified disaccharide-monophosphates that appeared in these plants. The noncatalytic domains of TPS1 ensure its targeting to the correct subcellular compartment and its catalytic fidelity and are required for appropriate signaling of Suc status by Tre6P. KW - cyanobacterial sucrose-phosphatase KW - trehalose 6-phosphate KW - vegetative growth KW - crystal-structure KW - gene-expression KW - thaliana KW - metabolism KW - phosphorylation KW - reveals KW - proteins Y1 - 2020 U6 - https://doi.org/10.1105/tpc.19.00837 SN - 0032-0781 SN - 1471-9053 VL - 32 IS - 6 SP - 1949 EP - 1972 PB - Oxford University Press CY - Oxford ER - TY - GEN A1 - Fichtner, Franziska A1 - Olas, Justyna Jadwiga A1 - Feil, Regina A1 - Watanabe, Mutsumi A1 - Krause, Ursula A1 - Hoefgen, Rainer A1 - Stitt, Mark A1 - Lunn, John Edward T1 - Functional features of Trehalose-6-Phosphate Synthase 1 BT - an essential enzyme in Arabidopsis T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Tre6P synthesis by TPS1 is essential for embryogenesis and postembryonic growth in Arabidopsis, and appropriate Suc signaling by Tre6P is dependent on the noncatalytic domains of TPS1. In Arabidopsis (Arabidopsis thaliana), TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) catalyzes the synthesis of the sucrose-signaling metabolite trehalose 6-phosphate (Tre6P) and is essential for embryogenesis and normal postembryonic growth and development. To understand its molecular functions, we transformed the embryo-lethal tps1-1 null mutant with various forms of TPS1 and with a heterologous TPS (OtsA) from Escherichia coli, under the control of the TPS1 promoter, and tested for complementation. TPS1 protein localized predominantly in the phloem-loading zone and guard cells in leaves, root vasculature, and shoot apical meristem, implicating it in both local and systemic signaling of Suc status. The protein is targeted mainly to the nucleus. Restoring Tre6P synthesis was both necessary and sufficient to rescue the tps1-1 mutant through embryogenesis. However, postembryonic growth and the sucrose-Tre6P relationship were disrupted in some complementation lines. A point mutation (A119W) in the catalytic domain or truncating the C-terminal domain of TPS1 severely compromised growth. Despite having high Tre6P levels, these plants never flowered, possibly because Tre6P signaling was disrupted by two unidentified disaccharide-monophosphates that appeared in these plants. The noncatalytic domains of TPS1 ensure its targeting to the correct subcellular compartment and its catalytic fidelity and are required for appropriate signaling of Suc status by Tre6P. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1432 KW - cyanobacterial sucrose-phosphatase KW - trehalose 6-phosphate KW - vegetative growth KW - crystal-structure KW - gene-expression KW - thaliana KW - metabolism KW - phosphorylation KW - reveals KW - proteins Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516532 SN - 1866-8372 IS - 6 ER - TY - GEN A1 - Del Campo, Cristian A1 - Bartholomäus, Alexander A1 - Fedyunin, Ivan A1 - Ignatova, Zoya T1 - Secondary Structure across the Bacterial Transcriptome Reveals Versatile Roles in mRNA Regulation and Function T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Messenger RNA acts as an informational molecule between DNA and translating ribosomes. Emerging evidence places mRNA in central cellular processes beyond its major function as informational entity. Although individual examples show that specific structural features of mRNA regulate translation and transcript stability, their role and function throughout the bacterial transcriptome remains unknown. Combining three sequencing approaches to provide a high resolution view of global mRNA secondary structure, translation efficiency and mRNA abundance, we unraveled structural features in E. coli mRNA with implications in translation and mRNA degradation. A poorly structured site upstream of the coding sequence serves as an additional unspecific binding site of the ribosomes and the degree of its secondary structure propensity negatively correlates with gene expression. Secondary structures within coding sequences are highly dynamic and influence translation only within a very small subset of positions. A secondary structure upstream of the stop codon is enriched in genes terminated by UAA codon with likely implications in translation termination. The global analysis further substantiates a common recognition signature of RNase E to initiate endonucleolytic cleavage. This work determines for the first time the E. coli RNA structurome, highlighting the contribution of mRNA secondary structure as a direct effector of a variety of processes, including translation and mRNA degradation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 520 KW - Escherichia coli KW - in vivo KW - translation initiation KW - crystal-structure KW - single ribosomes KW - gene-expression KW - global analysis KW - codon usage KW - E-cleavage KW - genome Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409662 SN - 1866-8372 IS - 520 ER - TY - GEN A1 - Connor, Daniel Oliver A1 - Zantow, Jonas A1 - Hust, Michael A1 - Bier, Frank Fabian A1 - von Nickisch-Rosenegk, Markus T1 - Identification of novel immunogenic proteins of Neisseria gonorrhoeae by phage display T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 541 KW - proteomic analysis KW - vaccine antigens KW - gene-expression KW - Mycobacterium tuberculosis KW - antimicrobial resistance KW - recombinant antibodies KW - Salmonella Thyphimurium KW - untreatable Gonorrhea KW - multidrug-resistant KW - Escherichia coli Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411077 SN - 1866-8372 IS - 541 ER -